cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A016129 Expansion of 1/((1-2*x)*(1-6*x)).

Original entry on oeis.org

1, 8, 52, 320, 1936, 11648, 69952, 419840, 2519296, 15116288, 90698752, 544194560, 3265171456, 19591036928, 117546237952, 705277460480, 4231664828416, 25389989101568, 152339934871552, 914039609753600, 5484237659570176, 32905425959518208, 197432555761303552
Offset: 0

Views

Author

Keywords

Crossrefs

Row sums of A100851.
Sequences with gf 1/((1-n*x)*(1-6*x)): A000400 (n=0), A003464 (n=1), this sequence (n=2), A016137 (n=3), A016149 (n=4), A005062 (n=5), A053469 (n=6), A016169 (n=7), A016170 (n=8), A016172 (n=9), A016173 (n=10), A016174 (n=11), A016175 (n=12).

Programs

Formula

a(n) = A071951(n+2, 2) = 9*(2*3)^(n-1) - (2*1)^(n-1) = (2^(n-1))*(3^(n+1)-1), n>=0. - Wolfdieter Lang, Nov 07 2003
From Lambert Klasen (lambert.klasen(AT)gmx.net), Feb 05 2005: (Start)
G.f.: 1/((1-2*x)*(1-6*x)).
E.g.f.: (-exp(2*x) + 3*exp(6*x))/2.
a(n) = (6^(n+1) - 2^(n+1))/4. (End)
a(n)^2 = A144843(n+1). - Philippe Deléham, Nov 26 2008
a(n) = 8*a(n-1) - 12*a(n-2). - Philippe Deléham, Jan 01 2009
a(n) = det(|ps(i+2,j+1)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013

A176794 Triangle read by rows: T(n, k) = 2^n*(q^k - 1)*(q^(n - k) - 1) + 1, where q = 3.

Original entry on oeis.org

1, 1, 1, 1, 17, 1, 1, 129, 129, 1, 1, 833, 1025, 833, 1, 1, 5121, 6657, 6657, 5121, 1, 1, 30977, 40961, 43265, 40961, 30977, 1, 1, 186369, 247809, 266241, 266241, 247809, 186369, 1, 1, 1119233, 1490945, 1610753, 1638401, 1610753, 1490945, 1119233, 1
Offset: 0

Views

Author

Roger L. Bagula, Apr 26 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,      17,       1;
  1,     129,     129,       1;
  1,     833,    1025,     833,       1;
  1,    5121,    6657,    6657,    5121,       1;
  1,   30977,   40961,   43265,   40961,   30977,       1;
  1,  186369,  247809,  266241,  266241,  247809,  186369,       1;
  1, 1119233, 1490945, 1610753, 1638401, 1610753, 1490945, 1119233,     1;
		

Crossrefs

Cf. A000012 (q=1), A176793 (q=2), this sequence (q=3), A176795 (q=4).
Cf. A144843.

Programs

  • Magma
    f:= func< n,k,q | 1 + (q^k-1)*(q^(n-k)-1)*2^n >;
    A176794:= func< n,k | f(n,k,3) >;
    [A176794(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Oct 03 2024
    
  • Mathematica
    T[n_, k_, q_] := 2^n*(q^k - 1)*(q^(n - k) - 1) + 1;
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def f(n, k, q): return 1 + (q^k -1)*(q^(n-k) -1)*2^n
    def A176794(n,k): return f(n,k,3)
    flatten([[A176794(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Oct 03 2024

Formula

T(n, k) = 1 - (f(n+1, 2*k+1, q) - f(n+1, 1, q)) - (f(n+1, 2*n-2*k+1, q) - f(n+1, 2*n+1, q)), where f(n, k, q) = 2^(n-1) * q^((k-1)/2), and q = 3.
From G. C. Greubel, Oct 02 2024: (Start)
T(n, k) = 2^n*(3^k - 1)*(3^(n-k) - 1) + 1.
T(2*n, n) = 1 + 4^n*(3^n - 1)^2 = 1 + 16*A144843(n).
Sum_{k=0..n} T(n, k) = 2^n*(n + 2 + (n-2)*3^n) + (n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/4)*(1 + (-1)^n)*(2 + 2^n - 6^n). (End)

Extensions

Edited by G. C. Greubel, Oct 03 2024
Showing 1-2 of 2 results.