cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A013973 Expansion of Eisenstein series E_6(q) (alternate convention E_3(q)).

Original entry on oeis.org

1, -504, -16632, -122976, -532728, -1575504, -4058208, -8471232, -17047800, -29883672, -51991632, -81170208, -129985632, -187132176, -279550656, -384422976, -545530104, -715608432, -986161176, -1247954400, -1665307728, -2066980608, -2678616864, -3243917376, -4159663200
Offset: 0

Views

Author

Keywords

Comments

Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + ...
		

References

  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 53.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • Jean-Pierre Serre, "A Course in Arithmetic", Springer, 1978
  • Joseph H. Silverman, "Advanced Topics in the Arithmetic of Elliptic Curves", Springer, 1994

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A001160, A286346 (eta(q)^24 / eta(q^2)^12), A286399 (eta(q^2)^12 * eta(q^4)^8 / eta(q)^8).

Programs

  • Magma
    Basis( ModularForms( Gamma1(1), 6), 25); /* Michael Somos, Apr 01 2015 */
  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(6);
    # alternative
    A013973 := proc(n)
        if n = 0 then
            1;
        else
            -504*numtheory[sigma][5](n) ;
        end if;
    end proc:
    seq(A013973(n),n=0..10) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -504 DivisorSigma[ 5, n]]; (* Michael Somos, Apr 21 2013 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^3 - 33 (t2 + t3) t2 t3 + t3^3], {q, 0, n}]; (* Michael Somos, Apr 21 2013 *)
    a[ n_] := SeriesCoefficient[ With[ {t3 = EllipticTheta[ 3, 0, q]^4, t4 = EllipticTheta[ 4, 0, q]^4}, (t3^3 - 3 (t3 - t4)^2 (t3 + t4) + t4^3) / 2], {q, 0, 2 n}]; (* Michael Somos, Jun 04 2014 *)
    a[ n_] := SeriesCoefficient[ With[ {e1 = QPochhammer[ q]^8, e4 = 32 q QPochhammer[ q^4]^8}, (e1 + e4) (e1^2 - 16 e1 e4 - 8 e4^2) / QPochhammer[ q^2]^12], {q, 0, n}]; (* Michael Somos, Apr 01 2015 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^3 - 3/2 (t2 + t3) t2 t3 + t3^3], {q, 0, 2 n}]; (* Michael Somos, Jul 31 2016 *)
    terms = 25; E6[x_] = 1-(12/BernoulliB[6])*Sum[k^5*x^k/(1-x^k), {k, terms}]; CoefficientList[E6[x] + O[x]^terms, x] (* Jean-François Alcover, Feb 28 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, -504 * sigma( n, 5))};
    
  • PARI
    {a(n) = my(A, A1, A4); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A4 = 32 * x * eta(x^4 + A)^8; polcoeff( (A1 + A4) * (A1^2 - 16 * A1 * A4 - 8 * A4^2) / eta(x^2 + A)^12, n))}; /* Michael Somos, Dec 30 2008 */
    
  • Sage
    ModularForms( Gamma1(1), 6, prec=25).0; # Michael Somos, Jun 04 2013
    

Formula

E6(q) = 1 - 504*Sum_{i>=1} sigma_5(i)q^i where sigma_5(n) is A001160, the sum of fifth powers of the divisors of n. It can also be expressed as E6(q) = 1 - 504*Sum_{i>=1} i^5*q^i/(1-q^i). - Gene Ward Smith, Aug 22 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*v - 8*u^2*w - 66*u*v^2 + 592*u*v*w - 512*u*w^2 + 121*v^3 - 4224*v^2*w + 4096*v*w^2. - Michael Somos, Apr 10 2005
Expansion of Ramanujan's function R(q) = 216*g3 (Weierstrass invariant).
Expansion of (eta(q)^8 + 32 * eta(q^4)^8) * (eta(q)^16 - 512 * eta(q)^8 * eta(q^4)^8 - 8192 * eta(q^4)^16) / eta(q^2)^12 in powers of q. - Michael Somos, Dec 30 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = - (t/i)^6 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
E6(q) = eta(q)^24 / eta(q^2)^12 - 480 * eta(q^2)^12 - 16896 * eta(q^2)^12 * eta(q^4)^8 / eta(q)^8 + 8192 * eta(q^4)^24 / eta(q^2)^12. - Seiichi Manyama, May 08 2017

A282050 Coefficients in q-expansion of (E_4^2 - E_2*E_6)/1008, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 66, 732, 4228, 15630, 48312, 117656, 270600, 533637, 1031580, 1771572, 3094896, 4826822, 7765296, 11441160, 17318416, 24137586, 35220042, 47045900, 66083640, 86124192, 116923752, 148035912, 198079200, 244218775, 318570252, 389021400, 497449568, 594823350
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2017

Keywords

Comments

Multiplicative because A001160 is. - Andrew Howroyd, Jul 23 2018

Examples

			a(6) = 1^6*6^1 + 2^6*3^1 + 3^6*2^1 + 6^6*1^1 = 48312.
		

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), this sequence (phi_{6, 1}), A282060 (phi_{8, 1}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A145095 (-q*E'_6), A008410 (E_4^2 = E_8), A282096 (E_2*E_6).

Programs

  • Mathematica
    terms = 30;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E4[x]^2 - E2[x]*E6[x])/1008 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2018 *)
    Table[n * DivisorSigma[5, n], {n, 0, 30}] (* Amiram Eldar, Sep 06 2023 *)
    nmax = 40; CoefficientList[Series[x*Sum[k^6*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = if(n < 1, 0, n * sigma(n, 5)); \\ Andrew Howroyd, Jul 23 2018

Formula

a(n) = A145095(n)/504 for n > 0.
G.f.: phi_{6, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = (A008410(n) - A282096(n))/1008. - Seiichi Manyama, Feb 10 2017
If p is a prime, a(p) = p^6 + p = A131472(p). - Seiichi Manyama, Feb 10 2017
a(n) = n*A001160(n) for n > 0. - Seiichi Manyama, Feb 18 2017
Sum_{k=1..n} a(k) ~ zeta(6) * n^7 / 7. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(5*e+5)-1)/(p^5-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-6). (End)
G.f. Sum_{k>=1} k^6*x^(k-1)/(1 - x^k)^2. - Vaclav Kotesovec, Aug 01 2025

A145094 Coefficients in expansion of Eisenstein series q*E'_4.

Original entry on oeis.org

240, 4320, 20160, 70080, 151200, 362880, 577920, 1123200, 1635120, 2721600, 3516480, 5886720, 6857760, 10402560, 12700800, 17975040, 20049120, 29432160, 31281600, 44150400, 48545280, 63296640, 67167360, 94348800, 94506000, 123439680, 132451200
Offset: 1

Views

Author

N. J. A. Sloane, Feb 28 2009

Keywords

Examples

			G.f. = 240*q + 4320*q^2 + 20160*q^3 + 70080*q^4 + 151200*q^5 + ...
		

Crossrefs

Cf. A076835 (-q*E'_2), this sequence (q*E'_4), A145095 (-q*E'_6).

Programs

  • Mathematica
    terms = 28;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E2[x]*E4[x] - E6[x])/3 + O[x]^terms // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 23 2018 *)
    nmax = 40; Rest[CoefficientList[Series[240*x*Sum[k^4*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 01 2025 *)

Formula

q*E'_4 = (E_2*E_4-E_6)/3.
G.f.: 240*x*f'(x), where f(x) = Sum_{k>=1} k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Aug 31 2017
Sum_{k=1..n} a(k) ~ 8 * Pi^4 * n^5 / 15. - Vaclav Kotesovec, May 09 2022

A076835 Coefficients in expansion of Eisenstein series -q*E'_2.

Original entry on oeis.org

24, 144, 288, 672, 720, 1728, 1344, 2880, 2808, 4320, 3168, 8064, 4368, 8064, 8640, 11904, 7344, 16848, 9120, 20160, 16128, 19008, 13248, 34560, 18600, 26208, 25920, 37632, 20880, 51840, 23808, 48384, 38016, 44064, 40320, 78624, 33744, 54720, 52416, 86400
Offset: 1

Views

Author

N. J. A. Sloane, Feb 28 2009

Keywords

Examples

			G.f. = 24*q + 144*q^2 + 288*q^3 + 672*q^4 + 720*q^5 + ...
		

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A064987.
Cf. this sequence (-q*E'_2), A145094 (q*E'_4), A145095 (-q*E'_6).

Programs

  • Maple
    with(numtheory); E:=proc(k) series(1-(2*k/bernoulli(k))*add( sigma[k-1](n)*q^n, n=1..60),q,61); end; -diff(E(2),q);
  • Mathematica
    terms = 41;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    -(E2[x]^2 - E4[x])/12 + O[x]^terms // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 23 2018 *)
    nmax = 40; Rest[CoefficientList[Series[24*x*Sum[k^2*x^(k-1)/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 01 2025 *)
  • PARI
    a(n) = 24 * n * sigma(n); \\ Amiram Eldar, Jan 07 2025

Formula

q*E'_2 = (E_2^2-E_4)/12.
a(n) = 24*A064987(n).
G.f.: 24*x*f'(x), where f(x) = Sum_{k>=1} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Aug 31 2017

A289637 Coefficients in expansion of -q*E'_6/E_6 where E_6 is the Eisenstein Series (A013973).

Original entry on oeis.org

504, 287280, 153540576, 82226602080, 44031499226064, 23578504122108096, 12626092121367162816, 6761166974864088760512, 3620548496603402008959384, 1938773508354916749345180960, 1038197035676506069321210300320
Offset: 1

Views

Author

Seiichi Manyama, Jul 09 2017

Keywords

Crossrefs

-q*E'_k/E_k: A289635 (k=2), A289636 (k=4), this sequence (k=6), A289638 (k=8), A289639 (k=10), A289640 (k=14).
Cf. A000706, A006352 (E_2), A013973 (E_6), A145095, A288851.

Programs

  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[504*x*Sum[k*DivisorSigma[5, k]*x^(k-1), {k, 1, nmax}]/(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)

Formula

a(n) = Sum_{d|n} d * A288851(d).
a(n) = A288840(n)/2 + 12*A000203(n).
a(n) = -Sum_{k=1..n-1} A013973(k)*a(n-k) - A013973(n)*n.
G.f.: 1/2 * E_8/E_6 - 1/2 * E_2.
a(n) ~ exp(2*Pi*n). - Vaclav Kotesovec, Jul 09 2017

A289744 Coefficients in expansion of q*E'_8 where E_8 is the Eisenstein Series (A008410).

Original entry on oeis.org

480, 123840, 3150720, 31704960, 187502400, 812885760, 2767107840, 8116473600, 20671878240, 48375619200, 102892268160, 208111357440, 391550752320, 713913822720, 1230765753600, 2077817249280, 3348363579840, 5333344585920, 8152110268800, 12384908524800
Offset: 1

Views

Author

Seiichi Manyama, Jul 11 2017

Keywords

Crossrefs

(-1)^(k/2)*q*E'_{k}: A076835 (k=2), A145094 (k=4), A145095 (k=6), this sequence (k=8), A289745 (k=10), A289746 (k=14).

Programs

Formula

a(n) = 480*A282060(n) = 480*n*A013955(n).

A289745 Coefficients in expansion of -q*E'_10 where E_10 is the Eisenstein Series (A013974).

Original entry on oeis.org

264, 270864, 15589728, 277365792, 2578126320, 15995060928, 74573467584, 284022573120, 920557851048, 2645157604320, 6847480097568, 16379004749184, 36394641851568, 76512377741184, 152243515448640, 290839114879104, 532222389723024, 944492355175248
Offset: 1

Views

Author

Seiichi Manyama, Jul 11 2017

Keywords

Crossrefs

(-1)^(k/2)*q*E'_{k}: A076835 (k=2), A145094 (k=4), A145095 (k=6), A289744 (k=8), this sequence (k=10), A289746 (k=14).

Programs

Formula

a(n) = 264*A282254(n) = 264*n*A013957(n).

A289746 Coefficients in expansion of -q*E'_14 where E_14 is the Eisenstein Series (A058550).

Original entry on oeis.org

24, 393264, 114791328, 6443237472, 146484375120, 1880970700608, 16277353748544, 105566002741440, 549043363293048, 2400292970716320, 9113996005998048, 30817824417926784, 94497033256783248, 266720718523641984, 700630664636456640
Offset: 1

Views

Author

Seiichi Manyama, Jul 11 2017

Keywords

Crossrefs

(-1)^(k/2)*q*E'_{k}: A076835 (k=2), A145094 (k=4), A145095 (k=6), A289744 (k=8), A289745 (k=10), this sequence (k=14).

Programs

Formula

a(n) = 24*A282597(n) = 24*n*A013961(n).
Showing 1-8 of 8 results.