cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A054767 Period of the sequence of Bell numbers A000110 (mod n).

Original entry on oeis.org

1, 3, 13, 12, 781, 39, 137257, 24, 39, 2343, 28531167061, 156, 25239592216021, 411771, 10153, 48, 51702516367896047761, 39, 109912203092239643840221, 9372, 1784341, 85593501183, 949112181811268728834319677753, 312, 3905, 75718776648063, 117, 1647084
Offset: 1

Views

Author

Eric W. Weisstein, Feb 09 2002

Keywords

Comments

For p prime, a(p) divides (p^p-1)/(p-1) = A023037(p), with equality at least for p up to 19.
Wagstaff shows that N(p) = (p^p-1)/(p-1) is the period for all primes p < 102 and for primes p = 113, 163, 167 and 173. For p = 7547, N(p) is a probable prime, which means that this p may have the maximum possible period N(p) also. See A088790. - T. D. Noe, Dec 17 2008

Crossrefs

Cf. A000110, A023037, A214810. A146093-A146122 gives Bell numbers read mod 3 to mod 32.

Programs

  • Mathematica
    (* Warning: this program is just a verification of the existing data
     and should not be used to extend the sequence beyond a(28) *)
    BellMod[k_, m_] := Mod[Sum[Mod[StirlingS2[k, j], m], {j, 1, k}], m];
    BellMod[k_, 1] := BellB[k];
    period[nn_List] := Module[{lgmin=2, lgmax=5, nn1},
       lg=If[Length[nn]<=lgmax, lgmin, lgmax];
       nn1 = nn[[1;;lg]];
       km=Length[nn]-lg;
       Catch[Do[If[nn1==nn[[k;;k+lg-1]], Throw[k-1]];
       If[k==km, Throw[0]], {k, 2, km}]]];
    dd[n_] := SelectFirst[Table[{d, n/d},
         {d, Divisors[n][[2;;-2]]}], GCD@@#==1&];
    a[1]=1;
    a[p_?PrimeQ] := a[p] = (p^p-1)/(p-1);
    a[n_/;n>4 && dd[n]!={}] := With[{g = dd[n]}, LCM[a[g[[1]]], a[g[[2]]]]];
    a[n_/;MemberQ[FactorInteger[n][[All, 2]], 1]] := a[n]=
       With[{pp = Select[FactorInteger[n], #1[[2]] ==1 &][[All, 1]]},
          a[n/Times@@pp]*Times@@a/@pp];
    a[n_/;n>4 && GCD @@ FactorInteger[n][[All, 2]]>1] := a[n]=
       With[{g=GCD @@ FactorInteger[n][[All, 2]]}, n^(1/g)*a[n^(1-1/g)]];
    a[n_] := period[Table[BellMod[k, n], {k, 1, 28}]];
    Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Jul 31 2012, updated May 06 2024 *)

Formula

If gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). But the sequence is not in general multiplicative; e.g. a(2) = 3, a(9) = 39 and a(18) = 39. - Franklin T. Adams-Watters, Jun 06 2006
a(2^s) = 3*2^s for s >= 2 (Theorem 6.4 in the Lunnon article). For an odd prime p, if a(p) = (p^p-1)/(p-1) (which is conjectured to hold for all p), then a(p^s) = p^(s-1)*(p^p-1)/(p-1) (Theorem 6.2 in the Lunnon article). - Jianing Song, Jun 18 2025

Extensions

More information from Phil Carmody, Dec 22 2002
Extended by T. D. Noe, Dec 18 2008
a(26) corrected by Jean-François Alcover, Jul 31 2012
a(18) corrected by Charles R Greathouse IV, Jul 31 2012
a(27)-a(28) from Charles R Greathouse IV, Sep 07 2016

A146093 Bell numbers (A000110) read mod 3.

Original entry on oeis.org

1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 0, 1, 2, 1, 0, 0, 1, 0, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Crossrefs

Cf. A000110, A146094-A146122. A054767 gives periods. See also A002034.

Programs

Formula

a(n+13) = a(n). - G. C. Greubel, Jan 30 2016

A146094 Bell numbers (A000110) read mod 4.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0, 3, 3, 2, 1, 1, 2, 1, 3, 0, 3, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Crossrefs

Cf. A000110, A146093-A146122 (Bell numbers read mod 3 to mod 32).
Cf. A054767 (periods).

Programs

Formula

a(n) = a(n-12). - Charles R Greathouse IV, Jul 06 2011 [See A054767. - Jianing Song, Jun 20 2025]

A146121 Bell numbers (A000110) read mod 31.

Original entry on oeis.org

1, 1, 2, 5, 15, 21, 17, 9, 17, 5, 4, 11, 15, 1, 20, 30, 16, 8, 1, 21, 3, 25, 26, 19, 16, 2, 15, 16, 17, 12, 3, 2, 3, 7, 20, 5, 7, 26, 26, 22, 9, 15, 26, 16, 21, 19, 15, 24, 9, 22, 24, 28, 20, 14, 4, 18, 17, 0, 2, 29, 15, 5, 5, 10, 27, 25, 12, 2, 21, 17, 0, 24, 10, 11, 6, 9, 3, 8, 2, 0, 15, 21
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Comments

Conjecture: a(n+568972471024107865287021434301977158534824481) = a(n). - G. C. Greubel, Feb 02 2016 [Conjecture is correct; see A054767. - Jianing Song, Jun 20 2025]

Crossrefs

Cf. A000110, A146093-A146122 (Bell numbers read mod 3 to mod 32).
Cf. A054767 (periods).

Programs

  • Magma
    [Bell(n) mod 31: n in [0..100]]; // G. C. Greubel, Feb 02 2016
  • Mathematica
    Mod[BellB[Range[0, 100]], 31] (* G. C. Greubel, Feb 02 2016 *)

A146095 Bell numbers (A000110) read mod 5.

Original entry on oeis.org

1, 1, 2, 0, 0, 2, 3, 2, 0, 2, 0, 0, 2, 2, 2, 0, 2, 4, 4, 2, 2, 1, 3, 1, 4, 3, 4, 4, 0, 2, 2, 3, 4, 2, 4, 0, 2, 1, 1, 4, 2, 3, 2, 0, 1, 0, 0, 2, 1, 1, 0, 2, 3, 2, 1, 2, 0, 0, 3, 3, 2, 0, 3, 1, 0, 2, 3, 4, 1, 2, 0, 2, 0, 3, 2, 2, 2, 3, 0, 4, 4, 0, 3, 4, 3, 4, 3, 2, 2, 2, 2, 0, 4, 4, 4, 2, 4, 3, 3, 1, 1, 2, 1, 4, 2
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Crossrefs

Cf. A000110, A146093-A146122 (Bell numbers read mod 3 to mod 32).
Cf. A054767 (periods).

Programs

Formula

a(n) = a(n-781). - Charles R Greathouse IV, Jul 06 2011 [See A054767. - Jianing Song, Jun 20 2025]

A146096 Bell numbers (A000110) read mod 6.

Original entry on oeis.org

1, 1, 2, 5, 3, 4, 5, 1, 0, 3, 1, 0, 1, 1, 4, 5, 5, 0, 1, 5, 4, 3, 3, 4, 3, 1, 4, 1, 5, 2, 3, 1, 2, 1, 3, 0, 1, 3, 4, 1, 1, 2, 5, 3, 4, 5, 1, 0, 3, 1, 0, 1, 1, 4, 5, 5, 0, 1, 5, 4, 3, 3, 4, 3, 1, 4, 1, 5, 2, 3, 1, 2, 1, 3, 0, 1, 3, 4, 1, 1, 2, 5, 3, 4, 5, 1, 0, 3, 1, 0, 1, 1, 4, 5, 5, 0, 1, 5, 4, 3, 3, 4, 3, 1, 4
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Crossrefs

Cf. A000110, A146093-A146122 (Bell numbers read mod 3 to mod 32).
Cf. A054767 (periods).

Programs

Formula

a(n+39) = a(n), for n>=0. - G. C. Greubel, Jan 30 2016 [See A054767. - Jianing Song, Jun 20 2025]

A146097 Bell numbers (A000110) read mod 7.

Original entry on oeis.org

1, 1, 2, 5, 1, 3, 0, 2, 3, 0, 6, 4, 3, 2, 5, 3, 6, 3, 0, 5, 0, 1, 2, 2, 3, 5, 5, 1, 3, 4, 5, 1, 3, 6, 4, 0, 2, 6, 4, 2, 3, 4, 2, 1, 3, 6, 5, 0, 6, 3, 4, 2, 4, 5, 6, 2, 0, 6, 6, 2, 4, 1, 2, 6, 5, 1, 6, 5, 3, 1, 4, 6, 0, 4, 1, 4, 5, 3, 6, 4, 5, 5, 2, 1, 2, 3, 2, 3, 0, 3, 3, 5, 5, 5, 3, 3, 6, 1, 3, 3, 1, 6, 2, 0, 4
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Crossrefs

Cf. A000110, A146093-A146122 (Bell numbers read mod 3 to mod 32).
Cf. A054767 (periods).

Programs

  • Magma
    [Bell(n) mod 7: n in [0..100]]; // Vincenzo Librandi, Feb 01 2016
  • Maple
    seq(combinat:-bell(n) mod 7, n=0..100); # Robert Israel, Jan 31 2016
  • Mathematica
    Mod[BellB[Range[0, 100]], 7] (* G. C. Greubel, Jan 31 2016 *)

Formula

a(n+137257) = a(n). - G. C. Greubel, Jan 31 2016 [See A054767. - Jianing Song, Jun 20 2025]

A146098 Bell numbers (A000110) read mod 8.

Original entry on oeis.org

1, 1, 2, 5, 7, 4, 3, 5, 4, 3, 7, 2, 5, 5, 2, 1, 3, 4, 7, 1, 4, 7, 3, 2, 1, 1, 2, 5, 7, 4, 3, 5, 4, 3, 7, 2, 5, 5, 2, 1, 3, 4, 7, 1, 4, 7, 3, 2, 1, 1, 2, 5, 7, 4, 3, 5, 4, 3, 7, 2, 5, 5, 2, 1, 3, 4, 7, 1, 4, 7, 3, 2, 1, 1, 2, 5, 7, 4, 3, 5, 4, 3, 7, 2, 5, 5, 2, 1, 3, 4, 7, 1, 4, 7, 3, 2, 1, 1, 2, 5, 7, 4, 3, 5, 4
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Crossrefs

Cf. A000110, A146093-A146122 (Bell numbers read mod 3 to mod 32).
Cf. A054767 (periods).

Programs

Formula

a(n) = a(n-24). [Charles R Greathouse IV, Jul 06 2011] [See A054767. - Jianing Song, Jun 20 2025]

A146099 Bell numbers (A000110) read mod 9.

Original entry on oeis.org

1, 1, 2, 5, 6, 7, 5, 4, 0, 6, 1, 6, 4, 1, 7, 5, 5, 0, 4, 5, 1, 6, 6, 1, 6, 4, 1, 1, 5, 2, 6, 4, 5, 4, 6, 3, 1, 6, 1, 1, 1, 2, 5, 6, 7, 5, 4, 0, 6, 1, 6, 4, 1, 7, 5, 5, 0, 4, 5, 1, 6, 6, 1, 6, 4, 1, 1, 5, 2, 6, 4, 5, 4, 6, 3, 1, 6, 1, 1, 1, 2, 5, 6, 7, 5, 4, 0, 6, 1, 6, 4, 1, 7, 5, 5, 0, 4, 5, 1, 6, 6, 1, 6, 4, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Crossrefs

Cf. A000110, A146093-A146122 (Bell numbers read mod 3 to mod 32).
Cf. A054767 (periods).

Programs

Formula

a(n+39) = a(n). - G. C. Greubel, Jan 31 2016 [See A054767. - Jianing Song, Jun 20 2025]

A146100 Bell numbers (A000110) read mod 10.

Original entry on oeis.org

1, 1, 2, 5, 5, 2, 3, 7, 0, 7, 5, 0, 7, 7, 2, 5, 7, 4, 9, 7, 2, 1, 3, 6, 9, 3, 4, 9, 5, 2, 7, 3, 4, 7, 9, 0, 7, 1, 6, 9, 7, 8, 7, 5, 6, 5, 5, 2, 1, 1, 0, 7, 3, 2, 1, 7, 0, 5, 3, 8, 7, 5, 8, 1, 5, 2, 3, 9, 6, 7, 5, 2, 5, 3, 2, 7, 7, 8, 5, 9, 4, 5, 3, 4, 3, 9, 8, 7, 7, 2, 7, 5, 4, 9, 9, 2, 9, 3, 8, 1, 1, 2, 1, 9, 2
Offset: 0

Views

Author

N. J. A. Sloane, Feb 07 2009

Keywords

Comments

Sequence is of period A054767(10) = 2343. - Jianing Song, Jun 20 2025

Crossrefs

Cf. A000110, A146093-A146122 (Bell numbers read mod 3 to mod 32).
Cf. A054767 (periods).

Programs

Showing 1-10 of 30 results. Next