A146325 Period 3: repeat [1, 4, 1].
1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1, 4, 1, 1
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Magma
&cat [[1,4,1]^^40]; // Bruno Berselli, Jun 27 2016
-
Maple
seq(op([1, 4, 1]), n=1..50); # Wesley Ivan Hurt, Jul 01 2016
-
Mathematica
Table[Round[N[4 (Cos[(2 n - 1) ArcTan[Sqrt[3]]])^2, 100]], {n, 1, 100}] PadLeft[{},111,{1,4,1}] (* Harvey P. Dale, Sep 18 2011 *)
-
PARI
a(n)=1+3*(n%3==2) \\ Jaume Oliver Lafont, Mar 24 2009
Formula
a(n) = 4*(cos((2*n - 1)*Pi/3))^2 = 4 - 4*(sin((2*n - 1)*Pi/3))^2.
a(n+3) = a(n).
a(n) = 2 - cos(2*Pi*n/3) + sqrt(3)*sin(2*Pi*n/3).
O.g.f.: x*(1+4*x+x^2)/(1-x^3). [Richard Choulet, Nov 03 2008]
a(n) = 6 - a(n-1) - a(n-2) for n>2. - Ant King, Jun 12 2012
a(n) = (n mod 3)^(n mod 3). - Bruno Berselli, Jun 27 2016
a(n) = 1 + A021337(n) for n>0. - Wesley Ivan Hurt, Jul 01 2016
Comments