A138118
Concatenation of 2n-1 digits 1 and n digits 0.
Original entry on oeis.org
10, 11100, 11111000, 11111110000, 11111111100000, 11111111111000000, 11111111111110000000, 11111111111111100000000, 11111111111111111000000000, 11111111111111111110000000000
Offset: 1
n .......... a(n)
1 ........... 10
2 ......... 11100
3 ....... 11111000
4 ..... 11111110000
5 ... 11111111100000
-
FromDigits/@Table[Join[PadRight[{},2n-1,1],PadRight[{},n,0]],{n,15}] (* Harvey P. Dale, Dec 09 2011 *)
A147590
Numbers whose binary representation is the concatenation of 2n-1 digits 1 and n-1 digits 0.
Original entry on oeis.org
1, 14, 124, 1016, 8176, 65504, 524224, 4194176, 33554176, 268434944, 2147482624, 17179867136, 137438949376, 1099511619584, 8796093005824, 70368744144896, 562949953355776, 4503599627239424, 36028797018701824, 288230376151187456
Offset: 1
1_10 is 1_2;
14_10 is 1110_2;
124_10 is 1111100_2;
1016_10 is 1111111000_2.
-
List([1..25], n-> 2^(n-2)*(4^n-2)); # G. C. Greubel, Jul 27 2019
-
[8^n/4-2^(n-1): n in [1..25]]; // Vincenzo Librandi, Jul 27 2019
-
seq(8^n/4-2^(n-1),n=1..25); # Nathaniel Johnston, Apr 30 2011
-
LinearRecurrence[{10,-16},{1,14},30] (* Harvey P. Dale, Oct 10 2014 *)
Table[8^n / 4 - 2^(n - 1), {n, 25}] (* Vincenzo Librandi, Jul 27 2019 *)
-
vector(25, n, 2^(n-2)*(4^n-2)) \\ G. C. Greubel, Jul 27 2019
-
[2^(n-2)*(4^n-2) for n in (1..25)] # G. C. Greubel, Jul 27 2019
A147595
a(n) is the number whose binary representation is A138144(n).
Original entry on oeis.org
1, 3, 7, 15, 27, 51, 99, 195, 387, 771, 1539, 3075, 6147, 12291, 24579, 49155, 98307, 196611, 393219, 786435, 1572867, 3145731, 6291459, 12582915, 25165827, 50331651, 100663299, 201326595, 402653187, 805306371, 1610612739, 3221225475
Offset: 1
-
[1,3,7] cat [3*(1+2^(n-2)): n in [4..40]]; // G. C. Greubel, Oct 25 2022
-
LinearRecurrence[{3,-2},{1,3,7,15,27},40] (* Harvey P. Dale, Nov 30 2020 *)
-
Vec(-x*(2*x^2-1)*(2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
-
[1,3,7]+[3*(1+2^(n-2)) for n in range(4,40)] # G. C. Greubel, Oct 25 2022
A147596
a(n) is the number whose binary representation is A138145(n).
Original entry on oeis.org
1, 3, 7, 15, 31, 63, 119, 231, 455, 903, 1799, 3591, 7175, 14343, 28679, 57351, 114695, 229383, 458759, 917511, 1835015, 3670023, 7340039, 14680071, 29360135, 58720263, 117440519, 234881031, 469762055, 939524103, 1879048199, 3758096391
Offset: 1
-
[1,3,7,15,31] cat [7*(1+2^(n-3)): n in [6..40]]; // G. C. Greubel, Oct 25 2022
-
Join[{1,3,7,15,31}, 7*(1+2^(Range[6, 40] -3))] (* G. C. Greubel, Oct 25 2022 *)
-
Vec(-x*(2*x^2-1)*(4*x^4+2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
-
def A147596(n): return 7*(1+2^(n-3)) -(1/8)*(63*int(n==0) +62*int(n==1) +60*int(n ==2)) -(7*int(n==3) +6*int(n==4) +4*int(n==5))
[A147596(n) for n in range(1,40)] # G. C. Greubel, Oct 25 2022
A147597
a(n) is the number whose binary representation is A138146(n).
Original entry on oeis.org
1, 7, 31, 119, 455, 1799, 7175, 28679, 114695, 458759, 1835015, 7340039, 29360135, 117440519, 469762055, 1879048199, 7516192775, 30064771079, 120259084295, 481036337159, 1924145348615, 7696581394439, 30786325577735, 123145302310919, 492581209243655
Offset: 1
-
[1,7,31] cat [7*(1+4^(n-2)): n in [4..40]]; // G. C. Greubel, Oct 25 2022
-
Table[FromDigits[#, 2] &@ If[n < 4, ConstantArray[1, 2 n - 1], Join[#, ConstantArray[0, 2 n - 7], #]] &@ ConstantArray[1, 3], {n, 25}] (* or *)
Rest@ CoefficientList[Series[x (2 x + 1) (2 x - 1) (4 x^2 + 2 x + 1)/((4 x - 1) (1 - x)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 25 2016 *)
LinearRecurrence[{5,-4},{1,7,31,119,455},30] (* Harvey P. Dale, Aug 04 2025 *)
-
Vec(x*(2*x+1)*(2*x-1)*(4*x^2+2*x+1)/((4*x-1)*(1-x)) + O(x^30)) \\ Colin Barker, Nov 25 2016
-
def A147597(n): return 7*(1+4^(n-2)) -(119/16)*int(n==0) -(31/4)*int(n==1) -7*int(n==2) -4*int(n==3)
[A147597(n) for n in range(1,41)] # G. C. Greubel, Oct 25 2022
A147589
Concatenation of 2n-1 digits 1 and n-1 digits 0.
Original entry on oeis.org
1, 1110, 1111100, 1111111000, 1111111110000, 1111111111100000, 1111111111111000000, 1111111111111110000000, 1111111111111111100000000, 1111111111111111111000000000, 1111111111111111111110000000000
Offset: 1
n .......... a(n)
1 ........... 1
2 ......... 1110
3 ....... 1111100
4 ..... 1111111000
5 ... 1111111110000
-
vector(100, n, 10^(-2+n)*(-10+100^n)/9) \\ Colin Barker, Jul 08 2014
-
Vec(x*(100*x+1)/((10*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Jul 08 2014
A358167
Irregular triangle read by rows: T(n, k) = k-th fixed point in Zhegalkin permutation n (row n of A197819).
Original entry on oeis.org
0, 1, 0, 2, 0, 6, 8, 14, 0, 30, 40, 54, 72, 86, 96, 126, 128, 158, 168, 182, 200, 214, 224, 254, 0, 510, 680, 854, 1224, 1334, 1632, 1950, 2176, 2430, 2600, 3030, 3144, 3510, 3808, 3870, 4320, 4382, 4680, 5046, 5160
Offset: 0
Triangle begins:
k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n
0 0, 1
1 0, 2
2 0, 6, 8, 14
3 0, 30, 40, 54, 72, 86, 96, 126, 128, 158, 168, 182, 200, 214, 224, 254
4 0, 510, 680...
A197819(3, 168) = a(3, 10) = 168.
How to calculate the term for n=3, k=10:
p = A197819(n-1, k) = A197819(2, 10) = 2
p XOR k = 2 XOR 10 = 8
shifted_k = 2^(2^(n-1)) * k = 2^(2^2) * 10 = 160
(p XOR k) + shifted_k = 8 + 160 = 168
168 in little-endian binary is 00010101. The corresponding algebraic normal form is XOR(AND(x0, x1), AND(x0, x2), AND(x0, x1, x2)). (Its ANDs correspond to the 3 binary 1s.) The truth table of this Boolean function is again 00010101.
(With x0 = 01010101, x1 = 00110011, x2 = 00001111.)
Example for the second relationship with A197819, as described in COMMENTS:
Let R = A197819(3, 0..255), F = a(3, 0..15), Q = A197819(2, 0..15).
I_3 = {i | R(i) XOR i = F(3)}
= {Q(3) XOR f | f in F} = {5 XOR f | f in F}
= {5, 27, 45, 51, 77, 83, 101, 123, 133, 155, 173, 179, 205, 211, 229, 251}
R(5) XOR 5 = R(27) XOR 27 = R(45) XOR 45 = R(51) XOR 51 = ... = F(3)
51 XOR 5 = 45 XOR 27 = 27 XOR 45 = 5 XOR 51 = ... = 54
-
def a(n, k):
if n == 0:
assert k < 2
return k
else:
row_length = 1 << (1 << (n-1)) # 2 ** 2 ** (n-1)
assert k < row_length
p = a197819(n-1, k)
p_xor_k = p ^ k
shifted_k = row_length * k
return p_xor_k + shifted_k
Showing 1-7 of 7 results.
Comments