A083420
a(n) = 2*4^n - 1.
Original entry on oeis.org
1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
- A. J. Macfarlane, Generating functions for integer sequences defined by the evolution of cellular automata with even rule numbers, Fig 11.
- Robert Schneider, Partition zeta functions, Research in Number Theory, 2(1):9, 2016.
- Eric Weisstein's World of Mathematics, Rule 220
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
A147537
Numbers whose binary representation is the concatenation of 2n-1 digits 1 and n digits 0.
Original entry on oeis.org
2, 28, 248, 2032, 16352, 131008, 1048448, 8388352, 67108352, 536869888, 4294965248, 34359734272, 274877898752, 2199023239168, 17592186011648, 140737488289792, 1125899906711552, 9007199254478848, 72057594037403648, 576460752302374912, 4611686018425290752
Offset: 1
-
List([1..20], n-> 2^n*(2^(2*n-1)-1)); # G. C. Greubel, Jan 12 2020
-
[2^n*(2^(2*n-1)-1): n in [1..20]] // G. C. Greubel, Jan 12 2020
-
seq(2^n*(2^(2*n-1)-1), n = 1..20); # G. C. Greubel, Jan 12 2020
-
Table[FromDigits[Join[Table[1, {2n - 1}], Table[0, {n}]], 2], {n, 1, 20}] (* Stefan Steinerberger, Nov 11 2008 *)
-
vector(20, n, 2^n*(2^(2*n-1)-1)) \\ G. C. Greubel, Jan 12 2020
-
def a(n): return ((1 << (2*n-1)) - 1) << n
print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Feb 28 2021
-
[2^n*(2^(2*n-1)-1) for n in (1..20)] # G. C. Greubel, Jan 12 2020
A147595
a(n) is the number whose binary representation is A138144(n).
Original entry on oeis.org
1, 3, 7, 15, 27, 51, 99, 195, 387, 771, 1539, 3075, 6147, 12291, 24579, 49155, 98307, 196611, 393219, 786435, 1572867, 3145731, 6291459, 12582915, 25165827, 50331651, 100663299, 201326595, 402653187, 805306371, 1610612739, 3221225475
Offset: 1
-
[1,3,7] cat [3*(1+2^(n-2)): n in [4..40]]; // G. C. Greubel, Oct 25 2022
-
LinearRecurrence[{3,-2},{1,3,7,15,27},40] (* Harvey P. Dale, Nov 30 2020 *)
-
Vec(-x*(2*x^2-1)*(2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
-
[1,3,7]+[3*(1+2^(n-2)) for n in range(4,40)] # G. C. Greubel, Oct 25 2022
A083332
a(n) = 10*a(n-2) - 16*a(n-4) for n > 3, a(0) = 1, a(1) = 5, a(2) = 14, a(3) = 34.
Original entry on oeis.org
1, 5, 14, 34, 124, 260, 1016, 2056, 8176, 16400, 65504, 131104, 524224, 1048640, 4194176, 8388736, 33554176, 67109120, 268434944, 536871424, 2147482624, 4294968320, 17179867136, 34359740416, 137438949376, 274877911040
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
-
CoefficientList[Series[(1+5x+4x^2-16x^3)/(1-10x^2+16x^4), {x, 0, 30}], x]
-
(a[0] : 1, a[1] : 5, a[2] : 14, a[3] : 34, a[n] := 10*a[n - 2] - 16*a[n - 4], makelist(a[n], n, 0, 50));/* Franck Maminirina Ramaharo, Nov 12 2018 */
A147596
a(n) is the number whose binary representation is A138145(n).
Original entry on oeis.org
1, 3, 7, 15, 31, 63, 119, 231, 455, 903, 1799, 3591, 7175, 14343, 28679, 57351, 114695, 229383, 458759, 917511, 1835015, 3670023, 7340039, 14680071, 29360135, 58720263, 117440519, 234881031, 469762055, 939524103, 1879048199, 3758096391
Offset: 1
-
[1,3,7,15,31] cat [7*(1+2^(n-3)): n in [6..40]]; // G. C. Greubel, Oct 25 2022
-
Join[{1,3,7,15,31}, 7*(1+2^(Range[6, 40] -3))] (* G. C. Greubel, Oct 25 2022 *)
-
Vec(-x*(2*x^2-1)*(4*x^4+2*x^2+1)/((x-1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
-
def A147596(n): return 7*(1+2^(n-3)) -(1/8)*(63*int(n==0) +62*int(n==1) +60*int(n ==2)) -(7*int(n==3) +6*int(n==4) +4*int(n==5))
[A147596(n) for n in range(1,40)] # G. C. Greubel, Oct 25 2022
A147597
a(n) is the number whose binary representation is A138146(n).
Original entry on oeis.org
1, 7, 31, 119, 455, 1799, 7175, 28679, 114695, 458759, 1835015, 7340039, 29360135, 117440519, 469762055, 1879048199, 7516192775, 30064771079, 120259084295, 481036337159, 1924145348615, 7696581394439, 30786325577735, 123145302310919, 492581209243655
Offset: 1
-
[1,7,31] cat [7*(1+4^(n-2)): n in [4..40]]; // G. C. Greubel, Oct 25 2022
-
Table[FromDigits[#, 2] &@ If[n < 4, ConstantArray[1, 2 n - 1], Join[#, ConstantArray[0, 2 n - 7], #]] &@ ConstantArray[1, 3], {n, 25}] (* or *)
Rest@ CoefficientList[Series[x (2 x + 1) (2 x - 1) (4 x^2 + 2 x + 1)/((4 x - 1) (1 - x)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 25 2016 *)
LinearRecurrence[{5,-4},{1,7,31,119,455},30] (* Harvey P. Dale, Aug 04 2025 *)
-
Vec(x*(2*x+1)*(2*x-1)*(4*x^2+2*x+1)/((4*x-1)*(1-x)) + O(x^30)) \\ Colin Barker, Nov 25 2016
-
def A147597(n): return 7*(1+4^(n-2)) -(119/16)*int(n==0) -(31/4)*int(n==1) -7*int(n==2) -4*int(n==3)
[A147597(n) for n in range(1,41)] # G. C. Greubel, Oct 25 2022
A002588
a(n) = largest noncomposite factor of 2^(2n+1) - 1.
Original entry on oeis.org
1, 7, 31, 127, 73, 89, 8191, 151, 131071, 524287, 337, 178481, 1801, 262657, 2089, 2147483647, 599479, 122921, 616318177, 121369, 164511353, 2099863, 23311, 13264529, 4432676798593, 131071, 20394401, 201961, 1212847, 3203431780337
Offset: 0
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 2, p. 84.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Max Alekseyev, Table of n, a(n) for n = 0..602 (terms 1..494 from Sean A. Irvine)
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- S. S. Wagstaff, Jr., The Cunningham Project
-
[1] cat [Maximum(PrimeDivisors(2^(2*n+1) - 1)): n in [1..60]]; // Vincenzo Librandi, Aug 02 2019
-
Table[FactorInteger[2^(2 n + 1) - 1] [[-1, 1]], {n, 0, 30}] (* Vincenzo Librandi, Aug 02 2019 *)
-
a(n) = if (n==0, 1, vecmax(factor(2^(2*n+1) - 1)[, 1])); \\ Michel Marcus, Aug 03 2019
A147589
Concatenation of 2n-1 digits 1 and n-1 digits 0.
Original entry on oeis.org
1, 1110, 1111100, 1111111000, 1111111110000, 1111111111100000, 1111111111111000000, 1111111111111110000000, 1111111111111111100000000, 1111111111111111111000000000, 1111111111111111111110000000000
Offset: 1
n .......... a(n)
1 ........... 1
2 ......... 1110
3 ....... 1111100
4 ..... 1111111000
5 ... 1111111110000
-
vector(100, n, 10^(-2+n)*(-10+100^n)/9) \\ Colin Barker, Jul 08 2014
-
Vec(x*(100*x+1)/((10*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Jul 08 2014
Showing 1-8 of 8 results.
Comments