cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A147709 Decimal expansion of sinh(EulerGamma).

Original entry on oeis.org

6, 0, 9, 8, 0, 6, 4, 6, 7, 2, 1, 1, 6, 5, 6, 4, 0, 7, 7, 0, 6, 1, 8, 0, 4, 4, 4, 1, 5, 8, 1, 4, 9, 3, 8, 1, 2, 0, 1, 9, 6, 7, 4, 1, 3, 6, 8, 9, 1, 3, 8, 5, 1, 8, 6, 0, 1, 7, 5, 3, 4, 0, 0, 2, 3, 3, 8, 7, 6, 5, 5, 4, 8, 6, 9, 6, 5, 1, 3, 2, 8, 2, 8, 7, 3, 5, 1, 5, 2, 8, 7, 7, 7, 1, 0, 1, 9, 6, 0, 7
Offset: 0

Views

Author

Artur Jasinski, Nov 11 2008

Keywords

Examples

			Equals 0.6098064672116564077061804441581493812019674136891385186017534...
		

Crossrefs

Cf. A147708 (with cosh), A147710 (with tanh), A147711 (with coth).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(EulerGamma(R)) - Exp(-EulerGamma(R)))/2; // G. C. Greubel, Aug 29 2018
  • Mathematica
    First[RealDigits[N[(Exp[EulerGamma] - Exp[ -EulerGamma])/2, 100]]]
    RealDigits[Sinh[EulerGamma],10,120][[1]] (* Harvey P. Dale, Mar 06 2013 *)
  • PARI
    default(realprecision, 100); (exp(Euler) - exp(-Euler))/2 \\ G. C. Greubel, Aug 29 2018
    

Extensions

Leading zero removed, offset adjusted by R. J. Mathar, Feb 05 2009
Corrected by Harvey P. Dale, Mar 06 2013

A147710 Decimal expansion of tanh(EulerGamma).

Original entry on oeis.org

5, 2, 0, 6, 3, 8, 7, 7, 2, 7, 7, 9, 4, 1, 6, 5, 5, 8, 8, 2, 9, 3, 9, 4, 5, 9, 1, 6, 6, 9, 0, 2, 8, 1, 3, 4, 2, 8, 7, 6, 7, 3, 1, 9, 3, 8, 1, 0, 4, 8, 7, 6, 0, 8, 2, 6, 5, 4, 0, 3, 6, 9, 0, 1, 6, 8, 5, 5, 7, 2, 6, 4, 6, 1, 3, 1, 8, 9, 4, 4, 6, 1, 0, 4, 2, 5, 7, 5, 2, 9, 2, 0, 7, 1, 7, 1, 2, 7, 6, 4
Offset: 0

Views

Author

Artur Jasinski, Nov 11 2008

Keywords

Examples

			0.52063877277941655882939459166902813428767319381048760826540...
		

Crossrefs

Cf. A147708 (with cosh), A147709 (with sinh), A147711 (with coth).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tanh(EulerGamma(R)); // G. C. Greubel, Aug 29 2018
  • Mathematica
    First[RealDigits[N[(Exp[EulerGamma] - Exp[ -EulerGamma])/(Exp[EulerGamma] + Exp[ -EulerGamma]), 100]]]
    RealDigits[Tanh[EulerGamma],10,120][[1]] (* Harvey P. Dale, Aug 10 2020 *)
  • PARI
    default(realprecision, 100); tanh(Euler) \\ G. C. Greubel, Aug 29 2018
    

Extensions

Leading zero removed and offset adjusted by R. J. Mathar, Feb 05 2009

A147711 Decimal expansion of coth(EulerGamma).

Original entry on oeis.org

1, 9, 2, 0, 7, 1, 7, 4, 9, 6, 0, 5, 1, 1, 0, 2, 7, 3, 7, 9, 7, 3, 6, 4, 8, 6, 6, 3, 4, 8, 3, 2, 1, 1, 2, 5, 5, 4, 7, 9, 1, 0, 6, 1, 9, 4, 0, 2, 4, 9, 7, 6, 1, 5, 5, 4, 4, 1, 2, 6, 4, 9, 1, 8, 9, 0, 1, 9, 9, 7, 8, 5, 5, 8, 7, 1, 2, 2, 5, 2, 1, 0, 5, 2, 1, 7, 0, 8, 1, 1, 9, 0, 9, 9, 6, 2, 1, 1, 5, 7
Offset: 1

Views

Author

Artur Jasinski, Nov 11 2008

Keywords

Examples

			1.920717496051102737973648663483211255479106194024976155441...
		

Crossrefs

Cf. A147708 (with cosh), A147709 (with sinh), A147710 (with tanh).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(EulerGamma(R)) + Exp(-EulerGamma(R)))/(Exp(EulerGamma(R)) - Exp(-EulerGamma(R))); // G. C. Greubel, Aug 29 2018
  • Mathematica
    First[RealDigits[N[(Exp[EulerGamma] + Exp[ -EulerGamma])/(Exp[EulerGamma] - Exp[ -EulerGamma]), 100]]]
  • PARI
    default(realprecision, 100); (exp(Euler) + exp(-Euler))/(exp(Euler) - exp(-Euler)) \\ G. C. Greubel, Aug 29 2018
    
  • PARI
    1/tanh(Euler) \\ Charles R Greathouse IV, May 14 2019
    

A322602 Continued fraction for cosh(gamma).

Original entry on oeis.org

1, 5, 1, 5, 4, 1, 5, 1, 1, 2, 9, 1, 1, 8, 1, 16, 1, 2, 1, 2, 1, 1, 1, 4, 27, 2, 1, 1, 1, 2, 1, 8, 1, 3, 5, 1, 1, 1, 1, 1, 16, 2, 1, 4, 1, 2, 62, 1, 8, 12, 1, 4, 1, 4, 3, 1, 1, 4, 1, 3, 20, 1, 2, 2, 106, 1, 13, 2, 7, 2, 1, 2, 4, 7, 1, 2, 1, 1, 2, 11, 1, 1, 2, 24, 1, 2, 2, 1, 1, 12
Offset: 0

Views

Author

Tristan Cam, Dec 20 2018

Keywords

Comments

Continued fraction of (exp(gamma)+exp(-gamma))/2 = cosh(gamma) (A147708), where gamma is the Euler-Mascheroni constant (A001620).
See A322603 for the continued fraction of sinh(gamma).

Examples

			1 + 1/(5 + 1/(1 + 1/(5 + 1/(4 + 1/(1 + 1/(5 + 1/(1 + ...))))))) = 1.17126595077854157753032365...
		

Crossrefs

Cf. A147708 (decimal expansion), A001620 (Euler-Mascheroni constant), A322603.

Programs

  • Maple
    with(numtheory): cfrac(cosh(gamma),100,'quotients'); # Muniru A Asiru, Dec 20 2018
  • Mathematica
    ContinuedFraction[ (Exp[EulerGamma] + Exp[ -EulerGamma])/2, 100]
  • PARI
    contfrac(cosh(Euler)) \\ Michel Marcus, Dec 21 2018

Extensions

Offset changed by Andrew Howroyd, Jul 07 2024
Showing 1-4 of 4 results.