cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A151949 a(n) = image of n under the Kaprekar map n -> (n with digits sorted into descending order) - (n with digits sorted into ascending order).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 9, 18, 27, 36, 45, 54, 63, 72, 18, 9, 0, 9, 18, 27, 36, 45, 54, 63, 27, 18, 9, 0, 9, 18, 27, 36, 45, 54, 36, 27, 18, 9, 0, 9, 18, 27, 36, 45, 45, 36, 27, 18, 9, 0, 9, 18, 27, 36, 54, 45, 36, 27, 18, 9, 0, 9, 18, 27, 63, 54, 45, 36, 27, 18, 9, 0, 9, 18, 72, 63, 54, 45, 36, 27, 18, 9, 0, 9, 81, 72, 63, 54, 45, 36, 27, 18, 9, 0, 99, 99, 198, 297, 396, 495, 594, 693, 792, 891, 99, 0, 99, 198, 297, 396, 495, 594, 693, 792
Offset: 0

Views

Author

N. J. A. Sloane, Aug 18 2009

Keywords

Comments

Entries are multiples of 9 - see A151950.
a(n) = A004186(n) - A004185(n); a(A010785(n)) = 0. - Reinhard Zumkeller, corrected: Mar 23 2015, Jul 09 2013

Examples

			For n = 15, a(15) = 51 - 15 = 36. - _Indranil Ghosh_, Feb 01 2017
		

Crossrefs

In other bases: A164884 (base 2), A164993 (base 3), A165012 (base 4), A165032 (base 5), A165051 (base 6), A165071 (base 7), A165090 (base 8), A165110 (base 9). - Joseph Myers, Sep 05 2009
Cf. also A004185, A004186, A099009 (fixed points).

Programs

  • Haskell
    a151949 n = a004186 n - a004185 n
    -- Reinhard Zumkeller, corrected: Mar 23 2015, Jul 09 2013
    
  • Mathematica
    f[n_] := Module[{idn = IntegerDigits@n, idns}, idns = Sort@ idn; FromDigits@ Reverse@ idns - FromDigits@ idns]; Table[ f@n, {n, 0, 200}] (* Harvey P. Dale, Aug 18 2009 *)
    Flatten[Table[Differences[FromDigits /@ {y = Sort[x = IntegerDigits[n]], Reverse[y]}], {n, 0, 74}]] (* Jayanta Basu, Jul 11 2013 *)
  • PARI
    a(n) = {my(d=digits(n)); fromdigits(vecsort(d,,4)) - fromdigits(vecsort(d));} \\ Michel Marcus, Dec 08 2019
  • Python
    def A151949(n):
        return int("".join(sorted(str(n),reverse=True)))-int("".join(sorted(str(n)))) # Indranil Ghosh, Feb 01 2017
    

Extensions

More terms from Robert G. Wilson v, Aug 19 2009
More than the usual number of terms are shown in order to distinguish this from similar sequences. - N. J. A. Sloane, Sep 22 2021

A099009 Fixed points of the Kaprekar mapping f(n) = n' - n'', where in n' the digits of n are arranged in descending, in n'' in ascending order.

Original entry on oeis.org

0, 495, 6174, 549945, 631764, 63317664, 97508421, 554999445, 864197532, 6333176664, 9753086421, 9975084201, 86431976532, 555499994445, 633331766664, 975330866421, 997530864201, 999750842001, 8643319766532, 63333317666664
Offset: 1

Views

Author

Klaus Brockhaus, Sep 22 2004

Keywords

Comments

There are no seven-digit fixed points.
Let d(n) denote n repetitions of the digit d. The sequence includes the following for all n>=0: 5(n)499(n)4(n)5, 63(n)176(n)4, 8643(n)1976(n)532. - Jens Kruse Andersen, Oct 04 2004
0's in n giving leading 0's in n'' is allowed.
For every natural number n let n' and n" be the numbers obtained by arranging the digits of n into decreasing and increasing order, and let f(n)=n'-n". It is known that the number 6174 is invariant under this transformation and that applying f a certain number of times to a number n with four digits the numbers 0, 495 or 6174 are always reached. - Vincenzo Librandi, Nov 17 2010
Each term of A055162(n) corresponds to A099009(n+1), with its digits being reordered in the ascending manner. - Alexander R. Povolotsky, Apr 27 2012
All terms of this sequence are divisible by nine, a(n)/9 = A132155(n). - Alexander R. Povolotsky, Apr 29 2012
A055160 differs from this sequence only at the positions of two terms in it: 554999445 and 555499994445. - Alexander R. Povolotsky, May 01 2012
The union of the sequences A214555, A214556, A214557, A214558, A214559 and the element 0 gives the sequence A099009. - Syed Iddi Hasan, Jul 24 2012
The comment made by Jens Kruse Andersen is missing one more family of terms (which starts with one or more digits "9" and ends with the digit "1"): 97508421, 9753086421, 9975084201, 975330866421, 997530864201, 999750842001, ... This family could be generalized (using the same method as in Andersen's comment) and it is actually covered by Syed Iddi Hasan in A214559. Also A214557 and A214558 (both - by Syed Iddi Hasan) are variants of Andersen's 8643(n)1976(n)532. - Alexander R. Povolotsky, Mar 14 2015
Fixed points of A151949. - Reinhard Zumkeller, Mar 23 2015

Examples

			6174 is a fixed point of the mapping and hence a term: 6174 -> 7641 - 1467 = 6174.
		

Crossrefs

In other bases: A163205 (base 2), A164997 (base 3), A165016 (base 4), A165036 (base 5), A165055 (base 6), A165075 (base 7), A165094 (base 8), A165114 (base 9).

Programs

  • Haskell
    a099009 n = a099009_list !! (n-1)
    a099009_list = [x | x <- [0..], a151949 x == x]
    -- Reinhard Zumkeller, Mar 23 2015
    
  • Magma
    a:=func; [k:k in [0..10^7]|a(k)]; // Marius A. Burtea, Sep 12 2019
  • Mathematica
    f[n_] := Block[{d = IntegerDigits@ n, a, b}, a = FromDigits@ Sort@ d; b = FromDigits@ Reverse@ Sort@ d; n == b - a]; Select[Range@ 1000000, f] (* Michael De Vlieger, Mar 20 2015 *)
  • Python
    # (version 2.4) from Tim Peters
    def extend(base, start, n):
        if n == 0:
            yield base
            return
        for i in range(start, 10):
            for x in extend(base + str(i), i, n-1):
                yield x
    def drive(n):
        result = []
        for lo in extend("", 0, n):
            ilo = int(lo)
            if ilo == 0 and n > 1:
                continue
            hi = lo[::-1]
            diff = str(int(hi) - ilo)
            diff = "0" * (n - len(diff)) + diff
            if sorted(diff) == list(lo):
                result.append(diff)
        return sorted(result)
    for n in range(1, 17):
        # print("Length", n)
        # print('-' * 40)
        for r in drive(n):
            print(r, end=', ')
    

Extensions

More terms from Jens Kruse Andersen and Tim Peters (tim(AT)python.org), Oct 04 2004
Corrected by Jens Kruse Andersen, Oct 25 2004

A165047 Consider the base-5 Kaprekar map x->K(x) described in A165032. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 48, 45781056, 1992, 7488, 249992, 26648194761946797370910644531056, 170312312, 447082519531056, 953674316406249992, 43487548828124832, 68219378590583801269531056
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 100 base-5 digits):
a(1) = 0 (base 10) = 0 (base 5)
a(2) = 48 (base 10) = 143 (base 5)
a(3) = 45781056 (base 10) = 43204443211 (base 5)
a(4) = 1992 (base 10) = 30432 (base 5)
a(5) = 7488 (base 10) = 214423 (base 5)
a(6) = 249992 (base 10) = 30444432 (base 5)
a(7) = 26648194761946797370910644531056 (base 10) = 432044444444444444444444444444444444444443211 (base 5)
a(8) = 170312312 (base 10) = 322044443222 (base 5)
a(9) = 447082519531056 (base 10) = 432044444444444443211 (base 5)
a(10) = 953674316406249992 (base 10) = 30444444444444444444444432 (base 5)
a(11) = 43487548828124832 (base 10) = 331044444444444444443312 (base 5)
a(12) = 68219378590583801269531056 (base 10) = 4320444444444444444444444444444443211 (base 5)
a(13) = 388774887899923005107893914100714027881532907485961914056 (base 10) = 432222222222222222222222044444444444444444444444444444443222222222222222222222211 (base 5)
a(14) = 4366040229797363281056 (base 10) = 4320444444444444444444444443211 (base 5)
a(15) = 15550995515996920287582474884401599410921335220336914056 (base 10) = 4322222222222222222222222222222222044444444432222222222222222222222222222222211 (base 5)
a(18) = 1705484464764595031738281056 (base 10) = 432044444444444444444444444444444443211 (base 5)
a(20) = 6505906924303417326882481575012207031056 (base 10) = 432044444444444444444444444444444444444444444444444443211 (base 5)
a(21) = 416378043155418708920478820800781056 (base 10) = 432044444444444444444444444444444444444444444443211 (base 5)
a(22) = 39708904567281599895522958831861615180969238281056 (base 10) = 43204444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(23) = 16655121726216748356819152832031056 (base 10) = 4320444444444444444444444444444444444444444443211 (base 5)
a(24) = 1479271969470441337508073405618280737883196707116439938545227050781056 (base 10) = 432044444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(26) = 260236276972136693075299263000488281056 (base 10) = 4320444444444444444444444444444444444444444444444443211 (base 5)
a(27) = 9694556779121484349492909871059964643791317939758300781056 (base 10) = 43204444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(28) = 151477449673773192960826716735311947559239342808723449707031056 (base 10) = 43204444444444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(29) = 4066191827689635829301550984382629394531056 (base 10) = 4320444444444444444444444444444444444444444444444444444443211 (base 5)
a(30) = 101654795692240895732538774609565734863281056 (base 10) = 432044444444444444444444444444444444444444444444444444444443211 (base 5)
a(33) = 1588356182691263995820918353274464607238769531056 (base 10) = 432044444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(35) = 992722614182039997388073970796540379524230957031056 (base 10) = 4320444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(36) = 59170878778817653500322936224731229515327868284657597541809082031056 (base 10) = 4320444444444444444444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(39) = 387782271164859373979716394842398585751652717590332031056 (base 10) = 432044444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)
a(41) = 242363919478037108737322746776499116094782948493957519531056 (base 10) = 4320444444444444444444444444444444444444444444444444444444444444444444444444444443211 (base 5)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165067 (base 6), A165086 (base 7), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165126 Consider the base-9 Kaprekar map x->K(x) described in A165110. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 16, 2256, 31596672, 34960, 26531651360, 14560721001508880, 8724454714749973651840, 108401672318914272, 711223428647787942432, 16513410921312, 278474880, 4754966263206652084045296, 183696
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 70 base-9 digits):
a(1) = 0 (base 10) = 0 (base 9)
a(2) = 16 (base 10) = 17 (base 9)
a(3) = 2256 (base 10) = 3076 (base 9)
a(4) = 31596672 (base 10) = 65407433 (base 9)
a(5) = 34960 (base 10) = 52854 (base 9)
a(6) = 26531651360 (base 10) = 75430875432 (base 9)
a(7) = 14560721001508880 (base 10) = 77643208887654212 (base 9)
a(8) = 8724454714749973651840 (base 10) = 87654320888888876543211 (base 9)
a(9) = 108401672318914272 (base 10) = 644444418864444443 (base 9)
a(10) = 711223428647787942432 (base 10) = 6444444441886444444443 (base 9)
a(11) = 16513410921312 (base 10) = 64418888886443 (base 9)
a(12) = 278474880 (base 10) = 641888643 (base 9)
a(13) = 4754966263206652084045296 (base 10) = 65544444218888886644444333 (base 9)
a(14) = 183696 (base 10) = 308876 (base 9)
a(15) = 8780535458788649952 (base 10) = 64444441888864444443 (base 9)
a(16) = 8811048483031324779456676539593726674416 (base 10) = 655444442188888888888888888888886644444333 (base 9)
a(18) = 177097392902234856396140027020301600 (base 10) = 7766644432208888888888888766544422212 (base 9)
a(20) = 50771339309018227821951440 (base 10) = 776444432088888887654444212 (base 9)
a(21) = 124998824875093374012011515622478472976 (base 10) = 7544444444444421888888886644444444444432 (base 9)
a(22) = 31197333902107825741164471552 (base 10) = 655444444444308875444444444333 (base 9)
a(23) = 685322163857921701893212141347733334983278765142051291692546183840 (base 10) = 876544444444444432088888888888888888888888888888887654444444444443211 (base 9)
a(25) = 702826002884083319045760971727413317645857409225018391041723392 (base 10) = 655444444444444444443088888888888888888888887544444444444444444333 (base 9)
a(27) = 94116815581356594318021072974737787790560 (base 10) = 7766644432208888888888888888888766544422212 (base 9)
a(28) = 2156904722606587695378609845389399883833898563216184240 (base 10) = 777777655554444333332222210888776666655555444433332111112 (base 9)
a(29) = 26981972242036651232570366433200 (base 10) = 776444444443208888876544444444212 (base 9)
a(31) = 377773874412068206712875872 (base 10) = 6441888888888888888888886443 (base 9)
a(35) = 2520442200659768347220271484032 (base 10) = 65408888888888888888888888887433 (base 9)
a(39) = 1161485426793562822354375723686123973520 (base 10) = 77644444320888888888888888888876544444212 (base 9)
a(40) = 16327050854444484146838503988925985281714578428892247536 (base 10) = 6554444444444444444444442188888866444444444444444444444333 (base 9)
a(46) = 10150412679066664692018845810715370585139195588212689167959856 (base 10) = 7665444444444444444444444422218888666644444444444444444444443222 (base 9)
a(65) = 26152889553714885216926446303415314330076524215805520 (base 10) = 7654308888888888888888888888888888888888888888888754322 (base 9)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165067 (base 6), A165086 (base 7), A165106 (base 8), A151959 (base 10).

A165008 Consider the base-3 Kaprekar map x->K(x) described in A164993. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 32, 320, 26240, 1240024, 11160256, 2297798771761759543384, 15075857741528904364175224, 8135830264, 5931020266096, 659002251784, 350220815692997944
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 200 base-3 digits):
a(1) = 0 (base 10) = 0 (base 3)
a(2) = 32 (base 10) = 1012 (base 3)
a(3) = 320 (base 10) = 102212 (base 3)
a(4) = 26240 (base 10) = 1022222212 (base 3)
a(5) = 1240024 (base 10) = 2022222222211 (base 3)
a(6) = 11160256 (base 10) = 202222222222211 (base 3)
a(7) = 2297798771761759543384 (base 10) = 202222222222222222222222222222222222222222211 (base 3)
a(8) = 15075857741528904364175224 (base 10) = 20222222222222222222222222222222222222222222222222211 (base 3)
a(9) = 8135830264 (base 10) = 202222222222222222211 (base 3)
a(10) = 5931020266096 (base 10) = 202222222222222222222222211 (base 3)
a(11) = 659002251784 (base 10) = 2022222222222222222222211 (base 3)
a(12) = 350220815692997944 (base 10) = 2022222222222222222222222222222222211 (base 3)
a(14) = 480412641554176 (base 10) = 2022222222222222222222222222211 (base 3)
a(15) = 1202547548374693105751742636119782969638250884664 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(18) = 3151987341236981536 (base 10) = 202222222222222222222222222222222222211 (base 3)
a(20) = 1221144477063841253498193544 (base 10) = 202222222222222222222222222222222222222222222222222222211 (base 3)
a(21) = 1675095304614322707130576 (base 10) = 202222222222222222222222222222222222222222222222211 (base 3)
a(22) = 5840696178317563736403001300866976 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(23) = 186121700512702523014504 (base 10) = 2022222222222222222222222222222222222222222222211 (base 3)
a(24) = 133616394263854789527971404013309218848694542736 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(26) = 135682719673760139277577056 (base 10) = 2022222222222222222222222222222222222222222222222222211 (base 3)
a(27) = 3103985417701264389637747414334049249616 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(28) = 2262805369504221740045917865049521902973704 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(29) = 98912702642171141533353677464 (base 10) = 2022222222222222222222222222222222222222222222222222222222211 (base 3)
a(30) = 890214323779540273800183097216 (base 10) = 202222222222222222222222222222222222222222222222222222222222211 (base 3)
a(33) = 648966242035284859600333477874104 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(34) = 1624463421305399727955317383718278234275809671395357663852488383536 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(35) = 52566265604858073627627011707802824 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(36) = 14846266029317198836441267112589913205410504744 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(39) = 344887268633473821070860823814894361064 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(40) = 1166199021234168600322186441674903634837253284669268066647739969989548815584492779042071704 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(41) = 27935868759311379506739726729006443246584 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(42) = 95922940564662548536033536191180611455752285286224474692825586559712504 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(44) = 51765728804119417583918760520852820074569256760349620344 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(46) = 131581537125737377964380708081180536976340583383023970772051559066816 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(48) = 850159086479708909634873915981004749796357644523896420586202438122381086561095235921670275856 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(50) = 10822927935372237951765683725078046726744257962016 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(51) = 97406351418350141565891153525702420540698321658184 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(52) = 50977383456624829456538198506977215332656450244796421055229922546880175495464 (base 10) = 20222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(53) = 7889914464886361466837183435581896063796564054313304 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(55) = 37737216298203055418676776419701705834360988178294873234416 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(60) = 1184233834131636401679426372730624832787065250447215736948464031601384 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(65) = 2228344885192592219417444970806966027813181990940133969619325624 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(69) = 14620170791748597551597856453464504108482287042558218974672395451864 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(74) = 863306465081962936824301825720625503101770567576020272235430279037412576 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(78) = 3010163515730239554579124083638497588178030730504983866890271696470727482831948976 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(81) = 4129168059986611185979594079065154441945172469828510105473623726297294215132984 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(83) = 334462612858915506064347120404277509797558970056109318543363521830080831425772104 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(86) = 243823244774149403920909050774718304642420489170903693218112007414128926109387867456 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(89) = 177747145440354915458342698014769644084324536605588792356003653404899987133743755379064 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(90) = 1599724308963194239125084282132926796758920829450299131204032880644099884203693798411616 (base 10) = 202222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(95) = 94462120719967656626097101775667194421817516058210713398466937569153454062343915102407808424 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)
a(98) = 68862886004856421680424787194461384733504969206435610067482397487912868011448714109655292344736 (base 10) = 2022222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222211 (base 3)

Crossrefs

In other bases: A153881 (base 2), A165028 (base 4), A165047 (base 5), A165067 (base 6), A165086 (base 7), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165028 Consider the base-4 Kaprekar map x->K(x) described in A165012. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 126, 41958
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 200 base-4 digits):
a(1) = 0 (base 10) = 0 (base 4)
a(2) = 126 (base 10) = 1332 (base 4)
a(3) = 41958 (base 10) = 22033212 (base 4)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165047 (base 5), A165067 (base 6), A165086 (base 7), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165067 Consider the base-6 Kaprekar map x->K(x) described in A165051. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 4305, 16840
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 100 base-6 digits):
a(1) = 0 (base 10) = 0 (base 6)
a(2) = 4305 (base 10) = 31533 (base 6)
a(3) = 16840 (base 10) = 205544 (base 6)
a(6) = 430 (base 10) = 1554 (base 6)
a(7) = 895275 (base 10) = 31104443 (base 6)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165086 (base 7), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165086 Consider the base-7 Kaprekar map x->K(x) described in A165071. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 144, 1068, 9458722410775248, 9936, 55500, 65945195409025452
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 100 base-7 digits):
a(1) = 0 (base 10) = 0 (base 7)
a(2) = 144 (base 10) = 264 (base 7)
a(3) = 1068 (base 10) = 3054 (base 7)
a(4) = 9458722410775248 (base 10) = 5544222066654442212 (base 7)
a(5) = 9936 (base 10) = 40653 (base 7)
a(6) = 55500 (base 10) = 320544 (base 7)
a(7) = 65945195409025452 (base 10) = 55332221066554443312 (base 7)
a(9) = 419850417612 (base 10) = 42222166444443 (base 7)
a(10) = 114965566537586468276798389479111631100827277423731225926928273344 (base 10) = 65444444444444444444444443066666666666666666666666532222222222222222222222211 (base 7)
a(11) = 31412208 (base 10) = 530666532 (base 7)
a(12) = 26884299308652 (base 10) = 5443216666443222 (base 7)
a(13) = 894060461610805641013834968 (base 10) = 54444444322106666665544322222222 (base 7)
a(14) = 1591271424672409468790707489057394638817384701224062547077367141620193382944 (base 10) = 65444444444444444444444444444306666666666666666666666666665322222222222222222222222222211 (base 7)
a(17) = 107837050564847832079804652808012 (base 10) = 55444444332221110666655554443322222212 (base 7)
a(24) = 7598644111289477155212 (base 10) = 54443222221066554444432222 (base 7)
a(25) = 18244344524504743400068812 (base 10) = 544432222222106655444444432222 (base 7)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165067 (base 6), A165106 (base 8), A165126 (base 9), A151959 (base 10).

A165106 Consider the base-8 Kaprekar map x->K(x) described in A165090. Sequence gives the smallest number that belongs to a cycle of length n under repeated iteration of this map, or -1 if there is no cycle of length n.

Original entry on oeis.org

0, 17892, 1589, 21483, 1022, 7034104602, 1445787
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Comments

Known values (to 70 base-8 digits):
a(1) = 0 (base 10) = 0 (base 8)
a(2) = 17892 (base 10) = 42744 (base 8)
a(3) = 1589 (base 10) = 3065 (base 8)
a(4) = 21483 (base 10) = 51753 (base 8)
a(5) = 1022 (base 10) = 1776 (base 8)
a(6) = 7034104602 (base 10) = 64320765432 (base 8)
a(7) = 1445787 (base 10) = 5407633 (base 8)
a(9) = 467364965130 (base 10) = 6632107665412 (base 8)
a(12) = 29921040357642 (base 10) = 663321076654412 (base 8)

Crossrefs

In other bases: A153881 (base 2), A165008 (base 3), A165028 (base 4), A165047 (base 5), A165067 (base 6), A165086 (base 7), A165126 (base 9), A151959 (base 10).

A164723 Numbers belonging to cycles of length 2 under the Kaprekar map A151949.

Original entry on oeis.org

53955, 59994, 8733209876622, 9665429654331, 873332098766622, 966543296654331, 8764421997755322, 8765431997654322, 87333320987666622, 96654332966654331, 8733333209876666622, 9665433329666654331
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Showing 1-10 of 17 results. Next