cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A152949 a(n) = 3 + binomial(n-1,2).

Original entry on oeis.org

3, 3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381
Offset: 1

Views

Author

Keywords

Comments

a(1)=3; then add 0 to the first number, then 1,2,3,4,... and so on.

Crossrefs

Programs

  • GAP
    List([1..55],n->3+Binomial(n-1,2)); # Muniru A Asiru, Oct 28 2018
  • Maple
    seq(coeff(series(x*(4*x^2-6*x+3)/(1-x)^3,x,n+1), x, n), n = 1 .. 55); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    s=3;lst={3};Do[s+=n;AppendTo[lst,s],{n,0,5!}];lst
    Table[Binomial[n-1,2],{n,60}]+3 (* Harvey P. Dale, Feb 27 2013 *)
  • PARI
    Vec( x*(3-6*x+4*x^2)/(1-x)^3 + O(x^66) ) \\ Joerg Arndt, Jul 24 2013
    
  • Sage
    [3+binomial(n,2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009
    

Formula

a(n) = a(n-1) + n - 2 (with a(1)=3). - Vincenzo Librandi, Nov 27 2010
G.f.: x*(3-6*x+4*x^2)/(1-x)^3. - Nikita Gogin, Jul 24 2013
a(n) = A016028(n+1) for n >= 2. - Georg Fischer, Oct 28 2018
Sum_{n>=1} 1/a(n) = 1/3 + 2*Pi*tanh(sqrt(23)*Pi/2)/sqrt(23). - Amiram Eldar, Dec 13 2022