A152949 a(n) = 3 + binomial(n-1,2).
3, 3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381
Offset: 1
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([1..55],n->3+Binomial(n-1,2)); # Muniru A Asiru, Oct 28 2018
-
Maple
seq(coeff(series(x*(4*x^2-6*x+3)/(1-x)^3,x,n+1), x, n), n = 1 .. 55); # Muniru A Asiru, Oct 28 2018
-
Mathematica
s=3;lst={3};Do[s+=n;AppendTo[lst,s],{n,0,5!}];lst Table[Binomial[n-1,2],{n,60}]+3 (* Harvey P. Dale, Feb 27 2013 *)
-
PARI
Vec( x*(3-6*x+4*x^2)/(1-x)^3 + O(x^66) ) \\ Joerg Arndt, Jul 24 2013
-
Sage
[3+binomial(n,2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009
Formula
a(n) = a(n-1) + n - 2 (with a(1)=3). - Vincenzo Librandi, Nov 27 2010
G.f.: x*(3-6*x+4*x^2)/(1-x)^3. - Nikita Gogin, Jul 24 2013
a(n) = A016028(n+1) for n >= 2. - Georg Fischer, Oct 28 2018
Sum_{n>=1} 1/a(n) = 1/3 + 2*Pi*tanh(sqrt(23)*Pi/2)/sqrt(23). - Amiram Eldar, Dec 13 2022
Comments