cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A152950 a(n) = 3 + n*(n-1)/2.

Original entry on oeis.org

3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381, 1434, 1488
Offset: 1

Views

Author

Keywords

Comments

a(1)=3; then add 1 to the first number, then 2, 3, 4, ... and so on.
Numbers m such that 8*m - 23 is a square. - Bruce J. Nicholson, Jul 25 2017

Crossrefs

Programs

Formula

a(n) = A152949(n+1) = 3 + A000217(n-1). - R. J. Mathar, Jan 03 2009
a(n) = 3 + C(n,2), n >= 1. - Zerinvary Lajos, Mar 12 2009
a(n) = a(n-1) + n - 1 (with a(1)=3). - Vincenzo Librandi, Nov 27 2010
Sum_{n>=1} 1/a(n) = 2*Pi*tanh(sqrt(23)*Pi/2)/sqrt(23). - Amiram Eldar, Dec 13 2022
From Elmo R. Oliveira, Nov 18 2024: (Start)
G.f.: x*(3 - 5*x + 3*x^2)/(1-x)^3.
E.g.f.: exp(x)*(3 + x^2/2) - 3.
a(n) = A027691(n-1)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A167614 a(n) = (n^2 + 3*n + 8)/2.

Original entry on oeis.org

6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381, 1434, 1488, 1543
Offset: 1

Views

Author

Vincenzo Librandi, Nov 07 2009

Keywords

Crossrefs

Programs

Formula

a(n) = n + a(n-1) + 1, with n > 1, a(1)=6.
G.f.: x*(6 - 9*x + 4*x^2)/(1-x)^3. - Vincenzo Librandi, Sep 16 2013
A228446(a(n)) = 7. - Reinhard Zumkeller, Mar 12 2014
a(n) = A152950(n+2) = A152949(n+3) = A016028(n+5). - Mathew Englander, Feb 03 2022
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(4 + 2*x + x^2/2) - 4.
a(n) = A027691(n+1)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. (End)

Extensions

Corrected (changed one term from 1036 to 1038) by Harvey P. Dale, Mar 24 2011
New name from Charles R Greathouse IV, Jan 11 2012
Showing 1-2 of 2 results.