A001477
The nonnegative integers.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 0
Triangular view:
0
1 2
3 4 5
6 7 8 9
10 11 12 13 14
15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 32 33 34 35
36 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 53 54
- Maurice Protat, Des Olympiades à l'Agrégation, suite vérifiant f(n+1) > f(f(n)), Problème 7, pp. 31-32, Ellipses, Paris 1997.
- N. J. A. Sloane, Table of n, a(n) for n = 0..500000
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- David Corneth, Counting to 13999 visualized | showing changes per digit, YouTube video, 2019.
- Hans Havermann, Table giving n and American English name for n, for 0 <= n <= 100999, without spaces or hyphens
- Hans Havermann, American English number names to one million, without spaces or hyphens
- The IMO Compendium, Problem 6, 19th IMO 1977.
- Tanya Khovanova, Recursive Sequences
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 12.
- Eric Weisstein's World of Mathematics, Natural Number
- Eric Weisstein's World of Mathematics, Nonnegative Integer
- Index entries for "core" sequences
- Index entries for sequences that are permutations of the natural numbers
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
- Index to sequences related to Olympiads.
When written as an array, the rows/columns are
A000217,
A000124,
A152948,
A152950,
A145018,
A167499,
A166136,
A167487... and
A000096,
A034856,
A055998,
A046691,
A052905,
A055999... (with appropriate offsets); cf. analogous lists for
A000027 in
A185787.
Cf.
A061579 (transposed matrix / reversed triangle).
-
a001477 = id
a001477_list = [0..] -- Reinhard Zumkeller, May 07 2012
-
print([n for n in 0:280]) # Paul Muljadi, Apr 15 2024
-
[ n : n in [0..100]];
-
[ seq(n,n=0..100) ];
-
Table[n, {n, 0, 100}] (* Stefan Steinerberger, Apr 08 2006 *)
LinearRecurrence[{2, -1}, {0, 1}, 77] (* Robert G. Wilson v, May 23 2013 *)
CoefficientList[ Series[x/(x - 1)^2, {x, 0, 76}], x] (* Robert G. Wilson v, May 23 2013 *)
Range[0,100] (* Harvey P. Dale, Dec 29 2024 *)
-
A001477(n)=n /* first term is a(0) */
-
def a(n): return n
print([a(n) for n in range(78)]) # Michael S. Branicky, Nov 13 2022
A000124
Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.
Original entry on oeis.org
1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379
Offset: 0
a(3) = 7 because the 132- and 321-avoiding permutations of {1, 2, 3, 4} are 1234, 2134, 3124, 2314, 4123, 3412, 2341.
G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 22*x^6 + 29*x^7 + ...
- Robert B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 24.
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
- Henry Ernest Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
- Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
- Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 98.
- William Allen Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
- Akiva M. Yaglom and Isaak M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
- Jean-Luc Baril and Céline Moreira Dos Santos, Pizza-cutter's problem and Hamiltonian path, Mathematics Magazine (2019) Vol. 88, No. 1, 1-9.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril, Toufik Mansour, and Armen Petrossian, Equivalence classes of permutations modulo excedances, preprint, Journal of Combinatorics, Volume 5 (2014) Number 4.
- Jean-Luc Baril and Armen Petrossian, Equivalence classes of permutations modulo descents and left-to-right maxima, preprint, Pure Mathematics and Applications, Volume 25, Issue 1 (Sep 2015).
- Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, preprint, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015) Paper #P1.58.
- Christian Bean, Anders Claesson, and Henning Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226 [math.CO], 2017.
- Henry Bottomley, Illustration of initial terms.
- Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, arXiv:math/0112281 [math.CO], 2001.
- Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14.
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 45, 56.
- Peter M. Chema, Illustration of first 22 terms as corners of a double square spiral with digital root.
- David Coles, Triangle Puzzle.
- M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)
- Tom Crawford, 22 Slices of Pizza with Six Cuts, Tom Rocks Maths video (2022)
- Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.
- Karl Dilcher and Kenneth B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23. See Cor. 5.
- Igor Dolinka, James East, and Robert D. Gray, Motzkin monoids and partial Brauer monoids, Journal of Algebra, volume 471, February 2017, pages 251-298. Also preprint arXiv:1512.02279 [math.GR], 2015. See Table 5.
- Matthew England, Russell Bradford, and James H. Davenport, Cylindrical algebraic decomposition with equational constraints, Journal of Symbolic Computation, Vol. 100 (2020), pp. 38-71; arXiv preprint, arXiv:1903.08999 [cs.SC], 2019.
- J. B. Gil and J. Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
- Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.
- Richard K. Guy, Letter to N. J. A. Sloane.
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- M. F. Hasler, Interactive illustration of A000124. [Sep 06 2017: The user can choose the slices to make, but the program can suggest a set of n slices which should yield the maximum number of pieces. For n slices this obviously requires 2n endpoints, or 2n+1 if they are equally spaced, so if there are not enough "blobs", their number is accordingly increased. This is the distinction between "draw" (done when you change the slices or number of blobs by hand) and "suggest" (propose a new set of slices).]
- Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute, Massachusetts, 2019.
- Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
- Cheyne Homberger and Vincent Vatter, On the effective and automatic enumeration of polynomial permutation classes, Journal of Symbolic Computation, Vol. 76 (2016), pp. 84-96; arXiv preprint, arXiv:1308.4946 [math.CO], 2013-2015.
- Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 22.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 386
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Myrto Kallipoliti, Robin Sulzgruber, and Eleni Tzanaki, Patterns in Shi tableaux and Dyck paths, arXiv:2006.06949 [math.CO], 2020.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
- Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011) # 11.4.2.
- Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016-2017.
- Derek Levin, Lara Pudwell, Manda Riehl and Andrew Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014.
- D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.
- Jim Loy, Triangle Puzzle.
- Toufik Mansour, Permutations avoiding a set of patterns from S_3 and a pattern from S_4, arXiv:math/9909019 [math.CO], 1999.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016-2018.
- Johannes W. Meijer and Manuel Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No.1, December 2008. pp. 176-187.
- Markus Moll, On a family of random noble means substitutions, Dr. Math. Dissertation, Universität Bielefeld, 2013, arXiv:1312.5136 [math.DS], 2013.
- Permutation Pattern Avoidance Library (PermPAL), Av(123,231)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Derek J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., Vol. 30, No. 290 (1946), pp. 149-150.
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Franck Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.
- Franck Ramaharo and Fanja Rakotondrajao, A state enumeration of the foil knot, arXiv:1712.04026 [math.CO], 2017.
- Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.
- Nathan Reading, On the structure of Bruhat Order, Ph.D. dissertation, University of Minnesota, April 2002.
- Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets.
- Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets, Order, Vol. 19, no. 1 (2002), 73-100.
- Herman P. Robinson, Letter to N. J. A. Sloane, Aug 16 1971, with attachments.
- Rodica Simion and Frank W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985; see Example 3.5.
- N. J. A. Sloane, Four hatpins can divide the plane into a(3) = 7 regions.
- N. J. A. Sloane, On single-deletion-correcting codes, 2002.
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 1.
- Andrew James Turner and Julian Francis Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, 2014.
- Eric Weisstein's World of Mathematics, Circle Division by Lines.
- Eric Weisstein's World of Mathematics, Plane Division by Lines.
- Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, Vol. 8 (2008), pp. 45-52.
- Wikipedia, Floyd's triangle.
- Index entries for "core" sequences.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000096 (Maximal number of pieces that can be obtained by cutting an annulus with n cuts, for n >= 1).
Cf.
A002061,
A002522,
A016028,
A055503,
A072863,
A144328,
A177862,
A263883,
A000127,
A005408,
A006261,
A016813,
A058331,
A080856,
A086514,
A161701,
A161702,
A161703,
A161704,
A161706,
A161707,
A161708,
A161710,
A161711,
A161712,
A161713,
A161715,
A051601,
A228918.
-
List([0..60],n->n*(n+1)/2+1); # Muniru A Asiru, Apr 11 2018
-
a000124 = (+ 1) . a000217
-- Reinhard Zumkeller, Oct 04 2012, Nov 15 2011
-
[n: n in [0..1500] | IsSquare(8*n-7)]; // Vincenzo Librandi, Apr 16 2014
-
A000124 := n-> n*(n+1)/2+1;
-
FoldList[#1 + #2 &, 1, Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
Accumulate[Range[0, 60]] + 1 (* Harvey P. Dale, Mar 12 2013 *)
Select[Range[2000], IntegerQ[Sqrt[8 # - 7]] &] (* Vincenzo Librandi, Apr 16 2014 *)
Table[PolygonalNumber[n] + 1, {n, 0, 52}] (* Michael De Vlieger, Jun 30 2016, Version 10.4 *)
LinearRecurrence[{3, -3, 1}, {1, 2, 4}, 53] (* Jean-François Alcover, Sep 23 2017 *)
-
{a(n) = (n^2 + n) / 2 + 1}; /* Michael Somos, Sep 04 2006 */
-
def a(n): return n*(n+1)//2 + 1
print([a(n) for n in range(53)]) # Michael S. Branicky, Aug 26 2021
-
(1 to 52).scanLeft(1)( + ) // Alonso del Arte, Feb 24 2019
A055998
a(n) = n*(n+5)/2.
Original entry on oeis.org
0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 10.
- Milan Janjic, Two Enumerative Functions.
- Kival Ngaokrajang, Illustration from A000027 (contains errors).
- Linhui Shen, Duals of semisimple Poisson-Lie groups and cluster theory of moduli spaces of G-local systems, arXiv:2003.07901 [math.RT], 2020. See p. 8.
- Leo Tavares, Illustration: Truncated Point Triangles.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
a(n) =
A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Cf. other rows, columns and diagonals of
A000027 written as a table:
A034856,
A046691,
A052905,
A055999,
A155212,
A051936,
A056000,
A183897,
A056115,
A051938;
A000124,
A022856,
A152950,
A145018,
A077169,
A166136,
A167487,
A173036;
A059993,
A090288,
A054000,
A142463,
A056220,
A001105,
A001844,
A058331,
A051890,
A097080,
A093328,
A137882.
A027691
a(n) = n^2 + n + 6.
Original entry on oeis.org
6, 8, 12, 18, 26, 36, 48, 62, 78, 96, 116, 138, 162, 188, 216, 246, 278, 312, 348, 386, 426, 468, 512, 558, 606, 656, 708, 762, 818, 876, 936, 998, 1062, 1128, 1196, 1266, 1338, 1412, 1488, 1566, 1646, 1728, 1812, 1898, 1986, 2076, 2168, 2262, 2358, 2456, 2556
Offset: 0
A027927
Number of plane regions after drawing (in general position) a convex n-gon and all its diagonals.
Original entry on oeis.org
1, 2, 5, 12, 26, 51, 92, 155, 247, 376, 551, 782, 1080, 1457, 1926, 2501, 3197, 4030, 5017, 6176, 7526, 9087, 10880, 12927, 15251, 17876, 20827, 24130, 27812, 31901, 36426, 41417, 46905, 52922, 59501, 66676, 74482, 82955, 92132, 102051, 112751, 124272, 136655, 149942, 164176, 179401
Offset: 2
a(2)=1 (segment traced twice has only exterior).
- Vincenzo Librandi, Table of n, a(n) for n = 2..10000
- Lapo Cioni and Luca Ferrari, Enumerative Results on the Schröder Pattern Poset, In: Dennunzio A., Formenti E., Manzoni L., Porreca A. (eds) Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, Lecture Notes in Computer Science, vol 10248.
- Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227. - From _N. J. A. Sloane_, Feb 01 2013
- J. B. Gil and J. Tomasko, Restricted Grassmannian permutations, ECA 2:4 (2022) Article S4PP6.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A006522 (does not count exterior of n-gon).
-
List([2..50], n-> (n^4 -6*n^3 +23*n^2 -42*n +48)/24); # G. C. Greubel, Sep 06 2019
-
[(n^4 -6*n^3 +23*n^2 -42*n +48)/24: n in [2..50]]; // G. C. Greubel, Sep 06 2019
-
seq((n^4 -6*n^3 +23*n^2 -42*n +48)/24, n=2..50); # G. C. Greubel, Sep 06 2019
-
LinearRecurrence[{5,-10,10,-5,1 }, {1,2,5,12,26}, 50] (* Vincenzo Librandi, Feb 01 2012 *)
S[n_] :=n*(n+1)/2; Table[S[S[n]+2]/3, {n, 0, 50}] (* Waldemar Puszkarz, Jan 22 2016 *)
-
a(n)=n*(n^3-6*n^2+23*n-42)/24+2 \\ Charles R Greathouse IV, Jan 31 2012
-
[(n^4 -6*n^3 +23*n^2 -42*n +48)/24 for n in (2..50)] # G. C. Greubel, Sep 06 2019
A279967
Square array read by antidiagonals upwards in which each term is the sum of prior elements in the same row, column, diagonal, or antidiagonal that divide n; the array is seeded with an initial value a(1)=1.
Original entry on oeis.org
1, 1, 2, 2, 2, 7, 2, 9, 10, 15, 2, 10, 1, 13, 17, 8, 0, 13, 1, 14, 9, 8, 0, 13, 3, 30, 13, 10, 2, 16, 1, 23, 5, 7, 14, 15, 2, 8, 28, 32, 2, 23, 2, 9, 49, 12, 0, 48, 2, 11, 1, 20, 3, 18, 13, 28, 0, 4, 1, 56, 5, 8, 16, 35, 46, 4, 2, 6, 2, 10
Offset: 1
After 6 terms, the array looks like:
.
1 2 7
1 2
2
We have a(6) = 7 because a(1) = 1, a(3) = 2, a(4) = 2, and a(5) = 2 divide 6; 1 + 2 + 2 + 2 = 7.
From _Hartmut F. W. Hoft_, Jan 23 2017: (Start)
1 2 7 15 17 9 10 15 49 13 4 31 22
1 2 10 13 14 13 14 9 18 46 12 66
2 9 1 1 30 7 2 3 35 12 3
2 10 13 3 5 23 20 16 14 17
2 0 13 23 2 1 8 11 2
8 0 1 32 11 5 3 6
8 16 28 2 56 42 8
2 8 48 1 2 104
2 0 4 10 1
12 0 2 10
28 6 2
2 42
2
.
Expanded the triangle to the first 13 antidiagonals of the array, i.e. a(1) ... a(91), to show the start of the 2- and 0-value patterns in columns 1 and 2. The first 0 beyond column 2 is a(677) in row 27, column 11 of the triangle.
A188382(n)=2*n^2+n+1 for n>=0 are the alternate sequence indices for column 1 starting in row 1, 2*n^2+n+2 for n>=1 are the alternate sequence indices for column 2 starting in row 2, and 2*n^2+n+11 for n>=5 are the alternate sequence indices for column 11 starting in row 1.
The sequence indices in the triangle for row positions k>=1 in columns 1,..., 5 are given in sequences A000124(k), A152948(k+3), A152950(k+3), A145018(k+4) and A167499(k+4).
(End)
Cf.
A279966 for the related sequence which counts prior terms.
Cf.
A269347 for a one-dimensional version of this sequence.
-
(* printing of the triangle is commented out of function a279967[] *)
pCol[{i_, j_}] := Map[{#, j}&, Range[1, i-1]]
pDiag[{i_, j_}] := If[j>=i, Map[{#, j-i+#}&, Range[1, i-1]], Map[{i-j+#, #}&, Range[1, j-1]]]
pRow[{i_, j_}] := Map[{i, #}&, Range[1, j-1]]
pAdiag[{i_, j_}] := Map[{i+j-#, #}&, Range[1, j-1]]
priorPos[{i_, j_}] := Join[pCol[{i, j}], pDiag[{i, j}], pRow[{i, j}], pAdiag[{i, j}]]
seqPos[{i_, j_}] := (i+j-2)(i+j-1)/2+j
antiDiag[k_] := Map[{k+1-#, #}&, Range[1, k]]
upperTriangle[k_] := Flatten[Map[antiDiag, Range[1, k]], 1]
a279967[k_] := Module[{ut=upperTriangle[k], ms=Table[" ", {i, 1, k}, {j, 1, k}], h, pos, val, seqL={1}}, ms[[1, 1]]=1; For[h=2, h<=Length[ut], h++, pos=ut[[h]]; val=Apply[Plus, Select[Map[ms[[Apply[Sequence, #]]]&, priorPos[pos]], #!=0 && Mod[seqPos[pos], #]==0&]]; AppendTo[seqL, val]; ms[[Apply[Sequence, pos]]]=val]; (* Print[TableForm[ms]]; *) seqL]
a279967[13] (* values in first 13 antidiagonals *)
(* Hartmut F. W. Hoft, Jan 23 2017 *)
Original entry on oeis.org
1, 2, 3, 5, 4, 6, 8, 9, 7, 10, 13, 12, 14, 11, 15, 18, 19, 17, 20, 16, 21, 25, 24, 26, 23, 27, 22, 28, 32, 33, 31, 34, 30, 35, 29, 36, 41, 40, 42, 39, 43, 38, 44, 37, 45, 50, 51, 49, 52, 48, 53, 47, 54, 46, 55, 61, 60, 62, 59, 63, 58, 64, 57, 65, 56, 66, 72, 73, 71, 74, 70, 75, 69, 76, 68, 77, 67
Offset: 1
The start of the sequence as table:
1....2...5...8..13..18...25...32...41...
3....4...9..12..19..24...33...40...51...
6....7..14..17..26..31...42...49...62...
10..11..20..23..34..39...52...59...74...
15..16..27..30..43..48...63...70...87...
21..22..35..38..53..58...75...82..101...
28..29..44..47..64..69...88...95..116...
36..37..54..57..76..81..102..109..132...
45..46..65..68..89..94..117..124..149...
. . .
The start of the sequence as triangle array read by rows:
1;
2,3;
5,4,6;
8,9,7,10;
13,12,14,11,15;
18,19,17,20,16,21;
25,24,26,23,27,22,28;
32,33,31,34,30,35,29,36;
41,40,42,39,43,38,44,37,45;
. . .
Row number r contains permutation from r numbers:
if r is odd ceiling(r^2/2), ceiling(r^2/2)+1, ceiling(r^2/2)-1, ceiling(r^2/2)+2, ceiling(r^2/2)-2,...r*(r+1)/2;
if r is even ceiling(r^2/2), ceiling(r^2/2)-1, ceiling(r^2/2)+1, ceiling(r^2/2)-2, ceiling(r^2/2)+2,...r*(r+1)/2;
-
max = 10; row[n_] := Table[Ceiling[(n + k - 1)^2/2] + If[OddQ[k], 1, -1]*Floor[n/2], {k, 1, max}]; t = Table[row[n], {n, 1, max}]; Table[t[[n - k + 1, k]], {n, 1, max}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 17 2013 *)
-
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
m1=int((i+j)/2)+int(i/2)*(-1)**(i+t+1)
m2=int((i+j+1)/2)+int(i/2)*(-1)**(i+t)
m=(m1+m2-1)*(m1+m2-2)/2+m1
A245300
Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.
Original entry on oeis.org
0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0
First rows and their row sums (A245301):
0 0;
1, 4 5;
3, 7, 12 22;
6, 11, 17, 24 58;
10, 16, 23, 31, 40 120;
15, 22, 30, 39, 49, 60 215;
21, 29, 38, 48, 59, 71, 84 350;
28, 37, 47, 58, 70, 83, 97, 112 532;
36, 46, 57, 69, 82, 96, 111, 127, 144 768;
45, 56, 68, 81, 95, 110, 126, 143, 161, 180 1065;
55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220 1430;
66, 79, 93, 108, 124, 141, 159, 178, 198, 219, 241, 264 1870;
78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312 2392.
-
a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
a245300_row n = map (a245300 n) [0..n]
a245300_tabl = map a245300_row [0..]
a245300_list = concat a245300_tabl
-
[k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
-
Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
-
flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021
A167614
a(n) = (n^2 + 3*n + 8)/2.
Original entry on oeis.org
6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381, 1434, 1488, 1543
Offset: 1
-
[(n^2+3*n+8)/2: n in [1..60]]; // Vincenzo Librandi, Sep 16 2013
-
Table[(n(n+3))/2+4,{n,80}] (* Harvey P. Dale, Mar 24 2011 *)
CoefficientList[Series[(6 - 9 x + 4 x^2)/(1 - x)^3,{x, 0, 60}], x] (* Vincenzo Librandi, Sep 16 2013 *)
-
a(n)=n*(n+3)/2+4 \\ Charles R Greathouse IV, Jan 11 2012
-
print([n*(n+3)//2+4 for n in range(1, 60)]) # Gennady Eremin, Feb 03 2022
Corrected (changed one term from 1036 to 1038) by
Harvey P. Dale, Mar 24 2011
A152949
a(n) = 3 + binomial(n-1,2).
Original entry on oeis.org
3, 3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381
Offset: 1
-
List([1..55],n->3+Binomial(n-1,2)); # Muniru A Asiru, Oct 28 2018
-
seq(coeff(series(x*(4*x^2-6*x+3)/(1-x)^3,x,n+1), x, n), n = 1 .. 55); # Muniru A Asiru, Oct 28 2018
-
s=3;lst={3};Do[s+=n;AppendTo[lst,s],{n,0,5!}];lst
Table[Binomial[n-1,2],{n,60}]+3 (* Harvey P. Dale, Feb 27 2013 *)
-
Vec( x*(3-6*x+4*x^2)/(1-x)^3 + O(x^66) ) \\ Joerg Arndt, Jul 24 2013
-
[3+binomial(n,2) for n in range(0, 54)] # Zerinvary Lajos, Mar 12 2009
Showing 1-10 of 16 results.
Comments