cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A152950 a(n) = 3 + n*(n-1)/2.

Original entry on oeis.org

3, 4, 6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381, 1434, 1488
Offset: 1

Views

Author

Keywords

Comments

a(1)=3; then add 1 to the first number, then 2, 3, 4, ... and so on.
Numbers m such that 8*m - 23 is a square. - Bruce J. Nicholson, Jul 25 2017

Crossrefs

Programs

Formula

a(n) = A152949(n+1) = 3 + A000217(n-1). - R. J. Mathar, Jan 03 2009
a(n) = 3 + C(n,2), n >= 1. - Zerinvary Lajos, Mar 12 2009
a(n) = a(n-1) + n - 1 (with a(1)=3). - Vincenzo Librandi, Nov 27 2010
Sum_{n>=1} 1/a(n) = 2*Pi*tanh(sqrt(23)*Pi/2)/sqrt(23). - Amiram Eldar, Dec 13 2022
From Elmo R. Oliveira, Nov 18 2024: (Start)
G.f.: x*(3 - 5*x + 3*x^2)/(1-x)^3.
E.g.f.: exp(x)*(3 + x^2/2) - 3.
a(n) = A027691(n-1)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A027721 Palindromes of form k^2 + k + 6.

Original entry on oeis.org

6, 8, 606, 656, 818, 83238, 6177716, 6505056, 8343438, 8681868, 834545438, 21543634512, 69872727896, 83456565438, 85425552458, 8032131312308, 8255470745528, 8345676765438, 8716172716178, 8766434346678, 8915858585198, 8973808083798, 213296020692312
Offset: 1

Views

Author

Keywords

Comments

Palindromes h such that 4*h - 23 is a square. - Bruno Berselli, Aug 29 2018

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; f[n_] := n^2 + n + 6; Select[f@ Range[0, 10^5], palQ] (* Giovanni Resta, Aug 29 2018 *)

Formula

a(n) = A027729(n)^2 + A027729(n) + 6. - Giovanni Resta, Aug 27 2018

Extensions

More terms from Giovanni Resta, Aug 27 2018

A167614 a(n) = (n^2 + 3*n + 8)/2.

Original entry on oeis.org

6, 9, 13, 18, 24, 31, 39, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 193, 213, 234, 256, 279, 303, 328, 354, 381, 409, 438, 468, 499, 531, 564, 598, 633, 669, 706, 744, 783, 823, 864, 906, 949, 993, 1038, 1084, 1131, 1179, 1228, 1278, 1329, 1381, 1434, 1488, 1543
Offset: 1

Views

Author

Vincenzo Librandi, Nov 07 2009

Keywords

Crossrefs

Programs

Formula

a(n) = n + a(n-1) + 1, with n > 1, a(1)=6.
G.f.: x*(6 - 9*x + 4*x^2)/(1-x)^3. - Vincenzo Librandi, Sep 16 2013
A228446(a(n)) = 7. - Reinhard Zumkeller, Mar 12 2014
a(n) = A152950(n+2) = A152949(n+3) = A016028(n+5). - Mathew Englander, Feb 03 2022
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(4 + 2*x + x^2/2) - 4.
a(n) = A027691(n+1)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 4. (End)

Extensions

Corrected (changed one term from 1036 to 1038) by Harvey P. Dale, Mar 24 2011
New name from Charles R Greathouse IV, Jan 11 2012

A027729 Numbers k such that k^2+k+6 is a palindrome.

Original entry on oeis.org

0, 1, 24, 25, 28, 288, 2485, 2550, 2888, 2946, 28888, 146777, 264334, 288888, 292276, 2834101, 2873233, 2888888, 2952316, 2960816, 2985943, 2995631, 14604657, 16353547, 28888888, 29190748, 29585508, 148278137, 264056434, 288888888, 2853889203, 2931604151, 28988127118
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..3*10^6] | Intseq(n^2+n+6) eq Reverse(Intseq(n^2+n+6))]; // Vincenzo Librandi, Jun 16 2016
  • Mathematica
    palOblongPlus6Q[n_] := Module[{d = IntegerDigits[n^2 + n + 6]}, d == Reverse[d]]; Select[Range[0, 3000000],  palOblongPlus6Q] (* Harvey P. Dale, Nov 14 2012 *)

Extensions

a(23)-a(33) from Giovanni Resta, Aug 27 2018

A213921 Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 8, 9, 13, 17, 14, 6, 16, 21, 26, 22, 11, 12, 25, 31, 37, 32, 18, 15, 20, 36, 43, 50, 44, 27, 23, 24, 30, 49, 57, 65, 58, 38, 33, 19, 35, 42, 64, 73, 82, 74, 51, 45, 28, 29, 48, 56, 81, 91, 101, 92, 66, 59, 39, 34, 41, 63, 72, 100, 111
Offset: 1

Views

Author

Boris Putievskiy, Mar 05 2013

Keywords

Comments

A permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Enumeration table T(n,k) is layer by layer. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2);
. . .
T(1,n), T(3,n), ... T(n,3), T(n,1), T(2,n), T(4,n), ... T(n,4), T(n,2);
...

Examples

			The start of the sequence as table:
   1   2   5  10  17  26 ...
   3   4   8  14  22  32 ...
   7   9   6  11  18  27 ...
  13  16  12  15  23  33 ...
  21  25  20  24  19  28 ...
  31  36  30  35  29  34 ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   2,  3;
   5,  4,  7;
  10,  8,  9, 13;
  17, 14,  6, 16, 21;
  26, 22, 11, 12, 25, 31;
  ...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i > j:
       result=i*i-(j%2)*i+2-int((j+2)/2)
    else:
       result=j*j-((i%2)+1)*j + int((i+3)/2)

Formula

As a table:
T(n,k) = n*n - (k mod 2)*n + 2 - floor((k+2)/2), if n>k;
T(n,k) = k*k - ((n mod 2)+1)*k + floor((n+3)/2), if n<=k.
As a linear sequence:
a(n) = i*i - (j mod 2)*i + 2 - floor((j+2)/2), if i>j;
a(n) = j*j - ((i mod 2)+1)*j + floor((i+3)/2), if i<=j; where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).

A214870 Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places counterclockwise. T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 9, 8, 13, 17, 16, 6, 14, 21, 26, 25, 11, 12, 22, 31, 37, 36, 18, 15, 20, 32, 43, 50, 49, 27, 24, 23, 30, 44, 57, 65, 64, 38, 35, 19, 33, 42, 58, 73, 82, 81, 51, 48, 28, 29, 45, 56, 74, 91, 101, 100, 66, 63, 39, 34, 41, 59, 72, 92, 111
Offset: 1

Views

Author

Boris Putievskiy, Mar 11 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1).
Enumeration table T(n,k) layer by layer. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2);
. . .
T(1,n), T(3,n), ... T(n,3), T(n,1); T(n,2), T(n,4), ... T(4,n), T(2,n);
. . .

Examples

			The start of the sequence as table:
   1   2   5  10  17  26 ...
   3   4   9  16  25  36 ...
   7   8   6  11  18  27 ...
  13  14  12  15  24  35 ...
  21  22  20  23  19  28 ...
  31  32  30  33  29  34 ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   2,  3;
   5,  4,  7;
  10,  9,  8, 13;
  17, 16,  6, 14, 21;
  26, 25, 11, 12, 22, 31;
  ...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i > j:
       result=i*i-i+(j%2)*(2-(j+1)/2)+((j+1)%2)*(j/2+1)
    else:
       result=j*j-2*(i%2)*j + (i%2)*((i+1)/2+1) + ((i+1)%2)*(-i/2+1)

Formula

As table
T(n,k) = k*k-2*(n mod 2)*k+(n mod 2)*((n+1)/2+1)+((n+1) mod 2)*(-n/2+1), if n<=k;
T(n,k) = n*n-n+(k mod 2)*(2-(k+1)/2)+((k+1) mod 2)*(k/2+1), if n>k.
As linear sequence
a(n) = j*j-2*(i mod 2)*j+(i mod 2)*((i+1)/2+1)+((i+1) mod 2)*(-i/2+1), if i<=j;
a(n) = i*i-i+(j mod 2)*(2-(j+1)/2)+((j+1) mod 2)*(j/2+1), if i>j; where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
Showing 1-6 of 6 results.