cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A226488 a(n) = n*(13*n - 9)/2.

Original entry on oeis.org

0, 2, 17, 45, 86, 140, 207, 287, 380, 486, 605, 737, 882, 1040, 1211, 1395, 1592, 1802, 2025, 2261, 2510, 2772, 3047, 3335, 3636, 3950, 4277, 4617, 4970, 5336, 5715, 6107, 6512, 6930, 7361, 7805, 8262, 8732, 9215, 9711, 10220, 10742, 11277, 11825, 12386, 12960
Offset: 0

Views

Author

Bruno Berselli, Jun 09 2013

Keywords

Comments

Sum of n-th octagonal number and n-th 9-gonal (nonagonal) number.
Sum of reciprocals of a(n), for n>0: 0.629618994194109711163742089971688...

Crossrefs

Cf. A000567, A001106, A153080 (first differences).
Cf. numbers of the form n*(n*k-k+4)/2 listed in A005843 (k=0), A000096 (k=1), A002378 (k=2), A005449 (k=3), A001105 (k=4), A005476 (k=5), A049450 (k=6), A218471 (k=7), A002939 (k=8), A062708 (k=9), A135706 (k=10), A180223 (k=11), A139267 (n=12), this sequence (k=13), A139268 (k=14), A226489 (k=15), A139271 (k=16), A180232 (k=17), A152995 (k=18), A226490 (k=19), A152965 (k=20), A226491 (k=21), A152997 (k=22).

Programs

  • GAP
    List([0..50], n-> n*(13*n-9)/2); # G. C. Greubel, Aug 30 2019
  • Magma
    [n*(13*n-9)/2: n in [0..50]];
    
  • Magma
    I:=[0,2,17]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2) +Self(n-3): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
    
  • Maple
    A226488:=n->n*(13*n - 9)/2; seq(A226488(n), n=0..50); # Wesley Ivan Hurt, Feb 25 2014
  • Mathematica
    Table[n(13n-9)/2, {n, 0, 50}]
    LinearRecurrence[{3, -3, 1}, {0, 2, 17}, 50] (* Harvey P. Dale, Jun 19 2013 *)
    CoefficientList[Series[x(2+11x)/(1-x)^3, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • PARI
    a(n)=n*(13*n-9)/2 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [n*(13*n-9)/2 for n in (0..50)] # G. C. Greubel, Aug 30 2019
    

Formula

G.f.: x*(2+11*x)/(1-x)^3.
a(n) + a(-n) = A152742(n).
a(0)=0, a(1)=2, a(2)=17; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 19 2013
E.g.f.: x*(4 + 13*x)*exp(x)/2. - G. C. Greubel, Aug 30 2019
a(n) = A000567(n) + A001106(n). - Michel Marcus, Aug 31 2019

A153448 3 times 12-gonal (or dodecagonal) numbers: a(n) = 3*n*(5*n-4).

Original entry on oeis.org

0, 3, 36, 99, 192, 315, 468, 651, 864, 1107, 1380, 1683, 2016, 2379, 2772, 3195, 3648, 4131, 4644, 5187, 5760, 6363, 6996, 7659, 8352, 9075, 9828, 10611, 11424, 12267, 13140, 14043, 14976, 15939, 16932, 17955, 19008, 20091, 21204
Offset: 0

Views

Author

Omar E. Pol, Dec 26 2008

Keywords

Comments

This sequence is related to A172117 by 3*A172117(n) = n*a(n) - Sum_{i=0..n-1} a(i) and this is the case d=10 in the identity n*(3*n*(d*n - d + 2)/2) - Sum_{k=0..n-1} 3*k*(d*k - d + 2)/2 = n*(n+1)*(2*d*n - 2*d + 3)/2. - Bruno Berselli, Aug 26 2010

Crossrefs

Cf. numbers of the form n*(n*k-k+6)/2, this sequence is the case k=30: see Comments lines of A226492.

Programs

Formula

a(n) = 15*n^2 - 12*n = A051624(n)*3.
a(n) = 30*n + a(n-1) - 27 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 3*x*(1 + 9*x)/(1-x)^3. - Bruno Berselli, Jan 21 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=3, a(2)=36. - Harvey P. Dale, Jun 18 2014
E.g.f.: 3*x*(1 + 5*x)*exp(x). - G. C. Greubel, Aug 21 2016
a(n) = (4*n-2)^2 - (n-2)^2. In general, if P(k,n) is the k-th n-gonal number, then (2*k+1)*P(8*k+4,n) = ((3*k+1)*n-2*k)^2 - (k*n-2*k)^2. - Charlie Marion, Jul 29 2021

A195015 Main axis of the square spiral whose edges have length A195013 and whose vertices are the numbers A195014.

Original entry on oeis.org

0, 2, 12, 24, 44, 66, 96, 128, 168, 210, 260, 312, 372, 434, 504, 576, 656, 738, 828, 920, 1020, 1122, 1232, 1344, 1464, 1586, 1716, 1848, 1988, 2130, 2280, 2432, 2592, 2754, 2924, 3096, 3276, 3458, 3648, 3840, 4040, 4242, 4452, 4664, 4884
Offset: 0

Views

Author

Omar E. Pol, Sep 26 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 2, ..., and the same line from 0, in the direction 0, 12, ..., in the square spiral mentioned above. Axis perpendicular to A195016 in the same spiral.
Also four times A005475 and positives A152965 interleaved.

Crossrefs

Programs

  • Magma
    [(2*n*(5*n+2)+3*(-1)^n-3)/4: n in [0..50]]; // Vincenzo Librandi, Oct 28 2011
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, 2, 12, 24}, 50] (* Paolo Xausa, Feb 09 2024 *)

Formula

From Bruno Berselli, Oct 14 2011: (Start)
G.f.: 2*x*(1+4*x)/((1+x)*(1-x)^3).
a(n) = (2*n*(5*n+2) + 3*(-1)^n-3)/4.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) + a(n-1) = A135706(n). (End)

A195016 a(n) = (n*(5*n+7)-(-1)^n+1)/2.

Original entry on oeis.org

0, 7, 17, 34, 54, 81, 111, 148, 188, 235, 285, 342, 402, 469, 539, 616, 696, 783, 873, 970, 1070, 1177, 1287, 1404, 1524, 1651, 1781, 1918, 2058, 2205, 2355, 2512, 2672, 2839, 3009, 3186, 3366, 3553, 3743, 3940, 4140, 4347, 4557, 4774, 4994
Offset: 0

Views

Author

Omar E. Pol, Sep 26 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7,..., and the same line from 0, in the direction 0, 17,..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. Axis perpendicular to the main axis A195015 in the same spiral.
Also sequence found by reading the line from 0, in the direction 0, 7,..., and the same line from 0, in the direction 0, 17,..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. This line is parallel to A153126 in the same spiral.

Crossrefs

Programs

  • Magma
    &cat[[n*t,(n+1)*t] where t is 10*n+7: n in [0..22]]; // Bruno Berselli, Oct 14 2011
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {0, 7, 17, 34}, 50] (* Paolo Xausa, Feb 09 2024 *)

Formula

n*(10*n-3), if n >= 1, and (2*n+1)*(5*n+1)-1, if n >= 0, interleaved.
G.f.: x*(7+3*x)/((1+x)*(1-x)^3). - Bruno Berselli, Oct 14 2011

Extensions

Concise definition by Bruno Berselli, Oct 14 2011
Showing 1-4 of 4 results.