A007524 Decimal expansion of log_10(2).
3, 0, 1, 0, 2, 9, 9, 9, 5, 6, 6, 3, 9, 8, 1, 1, 9, 5, 2, 1, 3, 7, 3, 8, 8, 9, 4, 7, 2, 4, 4, 9, 3, 0, 2, 6, 7, 6, 8, 1, 8, 9, 8, 8, 1, 4, 6, 2, 1, 0, 8, 5, 4, 1, 3, 1, 0, 4, 2, 7, 4, 6, 1, 1, 2, 7, 1, 0, 8, 1, 8, 9, 2, 7, 4, 4, 2, 4, 5, 0, 9, 4, 8, 6, 9, 2, 7, 2, 5, 2, 1, 1, 8, 1, 8, 6, 1, 7, 2, 0, 4, 0, 6, 8, 4
Offset: 0
Examples
0.3010299956639811952137388947244930267681898814621085413104274611271...
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 249.
- T. Hill, "Manipulation, or the First Significant Numeral Determines the Law", in 'La Recherche', No. 2 1999 pp. 72-76 (or No. 116 1999 pp. 72-75), Paris.
- M. E. Lines, A Number For Your Thought, pp. 43-52 Institute of Physics Pub. London 1990.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- I. Stewart, L'univers des nombres, "1 est plus probable que 9", pp. 57-61, Belin-Pour La Science, Paris 2000.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 27.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..20000
- K. Brown, Benford's Law.
- C. K. Caldwell, The Prime Glossary, Benford's law.
- I. Gent and T. Walsh, Benford's Law.
- T. P. Hill, The first digital phenomenon. [Broken link]
- T. P. Hill, The First-Digit Phenomenon.
- T. P. Hill, The First-Digit Phenomenon (Accompanying Diagrams).
- R. Matthews, The Power of One.
- S. J. Miller, Some Thoughts on Benford's Law.
- M. J. Nigrini, Benford's Law. [Broken link]
- I. Peterson, Mathtrek, First Digits. [Broken link]
- L. Pietronero et al., The Uneven Distribution of Numbers in Nature, arXiv:cond-mat/9808305 [cond-mat.stat-mech], 1998.
- Simon Plouffe, The LOG of 2(in base 10).
- J. Walthoe, Looking out for number one.
- Eric Weisstein's World of Mathematics, Benford's Law.
- Eric Weisstein's World of Mathematics, Mersenne Number.
- Wikipedia, Benford's law.
- Wikipedia, Decibel.
- Index entries for sequences related to Benford's law.
- Index entries for transcendental numbers.
Crossrefs
Cf. decimal expansion of log_10(m): this sequence, A114490 (m = 3), A114493 (m = 4), A153268 (m = 5), A153496 (m = 6), A153620 (m = 7), A153790 (m = 8), A104139 (m = 9), A154182 (m = 11), A154203 (m = 12), A154368 (m = 13), A154478 (m = 14), A154580 (m = 15), A154794 (m = 16), A154860 (m = 17), A154953 (m = 18), A155062 (m = 19), A155522 (m = 20), A155677 (m = 21), A155746 (m = 22), A155830 (m = 23), A155979 (m = 24).
Programs
-
Mathematica
RealDigits[Log[10, 2], 10, 120][[1]] (* Harvey P. Dale, Dec 19 2011 *)
-
PARI
default(realprecision, 20080); x=log(2)/log(10); d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b007524.txt", n, " ", d)); \\ Harry J. Smith, Apr 15 2009
Formula
log_10(2) = log(2)/log(10) = log(2)/(log(2) + log(5)).
Equals 1/A020862. - R. J. Mathar, Jul 31 2025
Extensions
Definition corrected by Franklin T. Adams-Watters, Apr 13 2006
Final digits of sequence corrected using the b-file. - N. J. A. Sloane, Aug 30 2009
Comments