cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A153284 a(n) = n + Sum_{j=1..n-1} (-1)^j * a(j) for n >= 2, a(1) = 1.

Original entry on oeis.org

1, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Walter Carlini, Dec 23 2008

Keywords

Comments

Row sums of triangle A153860. - Gary W. Adamson, Jan 03 2009
1 followed by interleaving of A000012 and A010701. - Klaus Brockhaus, Jan 04 2009

Examples

			a(1)=1, a(2)=2-a(1)=2-1=1, a(3)=3+a(2)-a(1)=3+1-1=3, a(4)=4-a(3)+a(2)-a(1)=4-3+1-1=1, a(5)=5+1-3+1-1=3, a(6)=6-3+1-3+1-1=1, a(7)=7+1-3+1-3+1-1, etc.
		

Crossrefs

Equals A010684 with the addition of the leading term of 1
The first sequence of a family that includes A153285 and A153286
Cf. A153860.
Cf. A000012 (all 1's sequence), A010701 (all 3's sequence). - Klaus Brockhaus, Jan 04 2009

Programs

  • Magma
    S:=[ 1 ]; for n in [2..105] do Append(~S, n + &+[ (-1)^j*S[j]: j in [1..n-1] ]); end for; S; // Klaus Brockhaus, Jan 04 2009

Formula

a(n)=1 if n is 1 or even; a(n)=3 if n is odd other than 1.
G.f.: x*(1 + x + 2*x^2)/((1+x)*(1-x)). - Klaus Brockhaus, Jan 04 2009 and Oct 15 2009

A154105 a(n) = 12*n^2 + 18*n + 7.

Original entry on oeis.org

7, 37, 91, 169, 271, 397, 547, 721, 919, 1141, 1387, 1657, 1951, 2269, 2611, 2977, 3367, 3781, 4219, 4681, 5167, 5677, 6211, 6769, 7351, 7957, 8587, 9241, 9919, 10621, 11347, 12097, 12871, 13669, 14491, 15337, 16207, 17101, 18019, 18961, 19927, 20917, 21931
Offset: 0

Views

Author

Klaus Brockhaus, Jan 04 2009

Keywords

Comments

a(n) is the number of partitions with three integral dissimilar components of the number 12(n+1), e.g for n=0, 12 may be partitioned in the 7 ways (1,2,9), (1,3,8), (1,4,7), (1,5,6), (2,3,7), (2,4,6) and (3,4,5). - Ian Duff, Jan 31 2010
Sequence found by reading the line from 7, in the direction 7, 37, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, May 08 2018

Examples

			a(2) = 12*2^2 + 18*2 + 7 = 91 = 6*14 + 7 = 6*A014106(2) + 7.
a(3) = a(2) + 24*3 + 6 = 91 + 72 + 6 = 169.
a(-4) = 12*4^2 - 18*4 + 7 = 127 = 2*64 - 1 = 2*A085473(3) - 1.
		

Crossrefs

Programs

Formula

G.f.: (7 + 16*x + x^2)/(1-x)^3.
a(n) = 6*A014106(n) + 7.
a(0) = 7; for n > 0, a(n) = a(n-1) + 24*n + 6.
a(-n-1) = 2*A085473(n) - 1. - Bruno Berselli, Sep 05 2011
E.g.f.: (7 + 30*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016
a(n) = 1 + A152746(n+1). - Omar E. Pol, May 08 2018
a(n) = A003215(n) + 6*A000290(n+1) + 6*A000217(n). - Leo Tavares, Sep 12 2022

A154106 a(n) = 12*n^2 + 22*n + 11.

Original entry on oeis.org

11, 45, 103, 185, 291, 421, 575, 753, 955, 1181, 1431, 1705, 2003, 2325, 2671, 3041, 3435, 3853, 4295, 4761, 5251, 5765, 6303, 6865, 7451, 8061, 8695, 9353, 10035, 10741, 11471, 12225, 13003, 13805, 14631, 15481, 16355, 17253, 18175, 19121
Offset: 0

Views

Author

Klaus Brockhaus, Jan 04 2009

Keywords

Comments

Sequence found by reading the line from 11, in the direction 11, 45,..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012

Examples

			a(3) = 12*3^2 + 22*3 + 11 = 185 = 2*3*29 + 11 = 2*3*A016969(4) + 11.
a(4) = a(3) +24*4 +10 = 185 +96 +10 = 291.
		

Crossrefs

Programs

  • Magma
    [ 12*n^2+22*n+11: n in [0..39] ];
    
  • Mathematica
    Table[12n^2+22n+11,{n,0,50}]  (* Harvey P. Dale, Mar 16 2011 *)
    LinearRecurrence[{3,-3,1},{11,45,103}, 25] (* G. C. Greubel, Sep 02 2016 *)
  • PARI
    a(n)=12*n^2+22*n+11 \\ Charles R Greathouse IV, Oct 16 2015

Formula

G.f.: (1 +x)*(11 +x)/(1-x)^3.
a(n) = 2*n*A016969(n+1) + 11.
a(0) = 11; for n > 0, a(n) = a(n-1) + 24*n + 10.
a(n) = 2 + A185918(n+1). - Omar E. Pol, Jul 18 2012
E.g.f.: (11 + 34*x + 12*x^2)*exp(x). - G. C. Greubel, Sep 02 2016

A153285 a(1)=1; for n > 1, a(n) = n^2 + Sum_{j=1..n-1} (-1)^j*a(j).

Original entry on oeis.org

1, 3, 11, 7, 23, 11, 35, 15, 47, 19, 59, 23, 71, 27, 83, 31, 95, 35, 107, 39, 119, 43, 131, 47, 143, 51, 155, 55, 167, 59, 179, 63, 191, 67, 203, 71, 215, 75, 227, 79, 239, 83, 251, 87, 263, 91, 275, 95, 287, 99, 299, 103, 311, 107, 323, 111, 335, 115, 347, 119, 359
Offset: 1

Views

Author

Walter Carlini, Dec 23 2008

Keywords

Comments

1 followed by interleaving of A004767 and A017653. - Klaus Brockhaus, Jan 04 2009

Examples

			a(1) = 1;
a(2) = 2^2 - a(1) = 4 - 1 = 3;
a(3) = 3^2 + a(2) - a(1) = 9 + 3 - 1 = 11;
a(4) = 4^2 - 11 + 3 - 1 = 7;
a(5) = 25 + 7 - 11 + 3 - 1 = 23;
a(6) = 36 - 23 + 7 - 11 + 3 - 1 = 11; etc.
		

Crossrefs

The second of a family of sequences that includes A153284 and A153286
Cf. A004767 (4n+3), A017653 (12n+11). - Klaus Brockhaus, Jan 04 2009

Programs

  • Magma
    S:=[ 1 ]; for n in [2..61] do Append(~S, n^2 + &+[ (-1)^j*S[j]: j in [1..n-1] ]); end for; S; // Klaus Brockhaus, Jan 04 2009
    
  • Scheme
    (define (A153285 n) (cond ((= 1 n) n) ((even? n) (+ n n -1)) (else (+ (* 6 n) -7)))) ;; Antti Karttunen, Aug 10 2017

Formula

a(n) = 2n-1 if n is 1 or an even number;
a(n) = 6n-7 if n is an odd number other than 1.
G.f.: x*(1 + 3*x + 9*x^2 + x^3 + 2*x^4)/((1+x)^2*(1-x)^2). - Klaus Brockhaus, Oct 15 2009
a(n) = 4*(n-1) - (2*n-3)*(-1)^n for n>1, a(1)=1. - Bruno Berselli, Sep 14 2011

Extensions

Extended beyond a(30) by Klaus Brockhaus, Jan 04 2009
Showing 1-4 of 4 results.