cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A043291 Every run length in base 2 is 2.

Original entry on oeis.org

3, 12, 51, 204, 819, 3276, 13107, 52428, 209715, 838860, 3355443, 13421772, 53687091, 214748364, 858993459, 3435973836, 13743895347, 54975581388, 219902325555, 879609302220, 3518437208883, 14073748835532, 56294995342131, 225179981368524, 900719925474099
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number whose binary representation is A153435(n). - Omar E. Pol, Jan 18 2009
See A033001 and following for the analog in other bases and the variant with runs of length >= 2. - M. F. Hasler, Feb 01 2014

Crossrefs

Cf. A153435 (binary).
Bisections: A108020, A182512. Bisection of A077854.

Programs

  • Magma
    [Floor(4^(n+1)/5): n in [1..30]]; // Vincenzo Librandi, Jun 26 2011
    
  • Maple
    seq(floor(4^(n+1)/5),n=1..25); # Mircea Merca, Dec 26 2010
  • Mathematica
    f[n_] := Floor[4^(n + 1)/5]; Array[f, 23] (* or *)
    a[1] = 3; a[2] = 12; a[3] = 51; a[n_] := a[n] = 4 a[n - 1] + a[n - 2] - 4 a[n - 3]; Array[a, 23] (* or *)
    3 LinearRecurrence[{4, 1, -4}, {1, 4, 17}, 23] (* Robert G. Wilson v, Jul 01 2014 *)
  • PARI
    A043291 = n->4^(n+1)\5 \\ M. F. Hasler, Feb 01 2014
    
  • Python
    def a(n): return int(''.join([['11', '00'][i%2] for i in range(n)]), 2)
    print([a(n) for n in range(1, 26)]) # Michael S. Branicky, Mar 12 2021

Formula

a(n) = 4*a(n-1)+a(n-2)-4*a(n-3), n>3. - John W. Layman, Feb 01 2000
a(n) = floor(4^(n+1)/5). - Mircea Merca, Dec 26 2010
G.f.: 3*x / ( (x-1)*(4*x-1)*(1+x) ). - Joerg Arndt, Jan 08 2011
a(n) = 3*A033114(n). - R. J. Mathar, Jan 08 2011

A152775 Numbers with 3n binary digits where every run length is 3, written in binary.

Original entry on oeis.org

111, 111000, 111000111, 111000111000, 111000111000111, 111000111000111000, 111000111000111000111, 111000111000111000111000, 111000111000111000111000111, 111000111000111000111000111000
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2009

Keywords

Comments

A152776 written in base 2.

Examples

			n ... a(n) .............. A152776(n)
1 ... 111 ............... 7
2 ... 111000 ............ 56
3 ... 111000111 ......... 455
4 ... 111000111000 ...... 3640
5 ... 111000111000111 ... 29127
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Table[Flatten[PadRight[{},n,{a,b}]/.{a->{1,1,1},b->{0,0,0}}],{n,10}] (* Harvey P. Dale, Mar 23 2012 *)
    CoefficientList[Series[111/((x - 1) (x + 1) (1000 x - 1)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 21 2014 *)
  • PARI
    Vec(111*x / ((x-1)*(x+1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Apr 20 2014

Formula

From Colin Barker, Apr 20 2014: (Start)
a(n) = (-1001-999*(-1)^n+2^(4+3*n)*125^(1+n))/18018.
a(n) = 1000*a(n-1)+a(n-2)-1000*a(n-3).
G.f.: 111*x / ((x-1)*(x+1)*(1000*x-1)). (End).

A152776 Numbers such that every run length in base 2 is 3.

Original entry on oeis.org

7, 56, 455, 3640, 29127, 233016, 1864135, 14913080, 119304647, 954437176, 7635497415, 61083979320, 488671834567, 3909374676536, 31274997412295, 250199979298360, 2001599834386887, 16012798675095096, 128102389400760775
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2009

Keywords

Comments

a(n) is the number whose binary representation is A152775(n).

Crossrefs

Formula

a(n)= 8*a(n-1) +a(n-2) -8*a(n-3). G.f.: 7x/((1-x)(1-8x)(1+x)). a(n)= (-7*(-1)^n-9+16*8^n)/18 = 7*A033118(n). [From R. J. Mathar, Jan 20 2009]

Extensions

More terms from R. J. Mathar, Jan 20 2009

A154805 Numbers with 4n binary digits where every run length is 4, written in binary.

Original entry on oeis.org

1111, 11110000, 111100001111, 1111000011110000, 11110000111100001111, 111100001111000011110000, 1111000011110000111100001111, 11110000111100001111000011110000, 111100001111000011110000111100001111
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Comments

A154806 written in base 2.

Examples

			n ... a(n) ................... A154806(n)
1 ... 1111 ................... 15
2 ... 11110000 ............... 240
3 ... 111100001111 ........... 3855
4 ... 1111000011110000 ....... 61680
5 ... 11110000111100001111 ... 986895
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1111/((x - 1) (x + 1) (10000 x - 1)), {x, 0, 10}], x] (* Vincenzo Librandi, Apr 22 2014 *)
    LinearRecurrence[{10000,1,-10000},{1111,11110000,111100001111},20] (* Harvey P. Dale, Jul 31 2017 *)
  • PARI
    Vec(1111*x/((x-1)*(x+1)*(10000*x-1)) + O(x^100)) \\ Colin Barker, Apr 20 2014

Formula

From Colin Barker, Apr 20 2014: (Start)
a(n) = (-10001-9999*(-1)^n+2^(5+4*n)*625^(1+n))/180018.
a(n) = 10000*a(n-1)+a(n-2)-10000*a(n-3).
G.f.: 1111*x / ((x-1)*(x+1)*(10000*x-1)). (End)

A154807 Numbers with 5n binary digits where every run length is 5, written in binary.

Original entry on oeis.org

11111, 1111100000, 111110000011111, 11111000001111100000, 1111100000111110000011111, 111110000011111000001111100000, 11111000001111100000111110000011111, 1111100000111110000011111000001111100000, 111110000011111000001111100000111110000011111
Offset: 1

Views

Author

Omar E. Pol, Jan 25 2009

Keywords

Comments

A154808 written in base 2.

Examples

			n ... a(n) ........................ A154808(n)
1 ... 11111 ....................... 31
2 ... 1111100000 .................. 992
3 ... 111110000011111 ............. 31775
4 ... 11111000001111100000 ........ 1016800
5 ... 1111100000111110000011111 ... 32537631
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[11111/((x - 1) (x + 1) (100000 x - 1)), {x, 0, 10}], x] (* Vincenzo Librandi, Apr 22 2014 *)
    LinearRecurrence[{100000,1,-100000},{11111,1111100000,111110000011111},20] (* Harvey P. Dale, Aug 08 2023 *)
  • PARI
    Vec(11111*x/((x-1)*(x+1)*(100000*x-1)) + O(x^100)) \\ Colin Barker, Apr 20 2014

Formula

From Colin Barker, Apr 20 2014: (Start)
a(n) = (-100001-99999*(-1)^n+2^(6+5*n)*3125^(1+n))/1800018.
a(n) = 100000*a(n-1)+a(n-2)-100000*a(n-3).
G.f.: 11111*x / ((x-1)*(x+1)*(100000*x-1)). (End)

Extensions

More terms from Colin Barker, Apr 20 2014

A044941 Number of runs of even length in base-10 representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A153435 (n where new high).

Extensions

Incorrect formulas and programs (as pointed out by Kevin Ryde) removed by Joerg Arndt, Nov 08 2020

A153434 a(n) is the smallest number m such that all n numbers m+1, m.m+1, ..., m.m. ... .m+1 are prime, where dot means concatenation.

Original entry on oeis.org

1, 2, 2, 42, 42, 1179990, 243464796
Offset: 1

Views

Author

Farideh Firoozbakht, Apr 01 2009

Keywords

Examples

			All 5 numbers 1+42,1+4242,1+424242,1+42424242 & 1+4242424242 are prime and 42
is the smallest such number so a(5)=42.
		

Crossrefs

Cf. A153435.
Showing 1-7 of 7 results.