A153727 Period 3: repeat [1, 4, 2] ; Trajectory of 3x+1 sequence starting at 1.
1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 4, 2
Offset: 0
References
- C. A. Pickover, The Math Book, 2009; Collatz Conjecture, pp 374-375.
Links
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Crossrefs
Programs
-
Haskell
a153727 n = a153727_list !! n a153727_list = iterate a006370 1 -- Reinhard Zumkeller, Oct 08 2011
-
Magma
[2^(-n mod 3) : n in [0..50]]; // Wesley Ivan Hurt, Jun 20 2014
-
Maple
A153727:=n->2^(-n mod 3); seq(A153727(n), n=0..50); # Wesley Ivan Hurt, Jun 20 2014
-
Mathematica
a[n_] := {1, 4, 2}[[Mod[n, 3] + 1]]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Jul 19 2013 *) LinearRecurrence[{0, 0, 1},{1, 4, 2},105] (* Ray Chandler, Aug 25 2015 *) PadRight[{},120,{1,4,2}] (* Harvey P. Dale, Jul 20 2025 *)
-
PARI
A153727(n)=[1,4,2][n%3+1] \\ M. F. Hasler, Feb 10 2011
-
Sage
[power_mod(2,-n,7)for n in range(0, 105)] # Zerinvary Lajos, Jun 07 2009
-
Sage
[power_mod(4, n, 7)for n in range(0, 105)] # Zerinvary Lajos, Nov 25 2009
Formula
a(3n)=1, a(3n+1)=4, a(3n+2)=2.
G.f.: (1+4*x+2*x^2)/(1-x^3).
a(n) = 4^n mod 7. - Zerinvary Lajos, Nov 25 2009
a(n) = 2^(-n mod 3) = 2^A080425(n). - Wesley Ivan Hurt, Jun 20 2014
a(n) = sqrt(4^(5*n) mod 21). - Gary Detlefs, Jul 07 2014
From Wesley Ivan Hurt, Jun 30 2016: (Start)
a(n) = a(n-3) for n>2.
a(n) = (7 - 4*cos(2*n*Pi/3) + 2*sqrt(3)*sin(2*n*Pi/3))/3. (End)
Comments