cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A155138 a(n) = nonnegative value y such that (A155136(n), y) is a solution to the Diophantine equation x^3+28*x^2 = y^2.

Original entry on oeis.org

0, 27, 48, 57, 48, 15, 48, 147, 288, 477, 720, 1023, 1392, 1833, 2352, 2955, 3648, 4437, 5328, 6327, 7440, 8673, 10032, 11523, 13152, 14925, 16848, 18927, 21168, 23577, 26160, 28923, 31872, 35013, 38352, 41895, 45648, 49617, 53808, 58227, 62880
Offset: 1

Views

Author

Klaus Brockhaus, Jan 21 2009

Keywords

Comments

Agrees with A155137 except for omission of zero after a(6) = 15.

Examples

			(A155136(4), a(4)) = (-19, 57) is a solution: (-19)^3+28*(-19)^2 = -6859+10108 = 3249 = 57^2.
(A155136(8), a(8)) = (21, 147) is a solution: 21^3+28*21^2 = 9261+12348 = 21609 = 147^2.
		

Crossrefs

Programs

  • Magma
    [ Abs((n-1)^3-28*(n-1)): n in [1..41] ];
  • Mathematica
    Abs[#^3-28#]&/@Range[0,40] (* Harvey P. Dale, Aug 30 2016 *)

Formula

a(n) = Abs((n-1)^3-28*(n-1)).
G.f.: 3*x*(9-20*x+9*x^2+32*x^5-30*x^6-8*x^7+10*x^8)/(1-x)^4.

A114962 a(n) = n^2 + 14.

Original entry on oeis.org

14, 15, 18, 23, 30, 39, 50, 63, 78, 95, 114, 135, 158, 183, 210, 239, 270, 303, 338, 375, 414, 455, 498, 543, 590, 639, 690, 743, 798, 855, 914, 975, 1038, 1103, 1170, 1239, 1310, 1383, 1458, 1535, 1614, 1695, 1778, 1863, 1950, 2039, 2130, 2223, 2318, 2415, 2514
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 14".
x^2 + 14 != y^n for all x,y and n > 1.

Crossrefs

Cf. A155136, n^2 - 28; A000290, n^2; A114948, n^2 + 10.
Cf. sequences of the type n^2 + k: A002522 (k=1), A059100 (k=2), A117950 (k=3), A087475 (k=4), A117951 (k=5), A114949 (k=6), A117619 (k=7), A189833 (k=8), A189834 (k=9), A114948 (k=10), A189836 (k=11), A241748 (k=12), A241749 (k=13), this sequence (k=14), A241750 (k=15), A241751 (k=16), A241847 (k=17), A241848 (k=18), A241849 (k=19), A241850 (k=20), A241851 (k=21), A114963 (k=22), A241889 (k=23), A241890 (k=24), A114964 (k=30).

Programs

Formula

G.f.: (14-27*x+15*x^2)/(1-x)^3. - Colin Barker, Jan 11 2012
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(14)*Pi*coth(sqrt(14)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(14)*Pi*cosech(sqrt(14)*Pi))/28. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(14 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Added 14 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 02 2020

A153642 a(n) = 4*n^2 + 24*n + 8.

Original entry on oeis.org

36, 72, 116, 168, 228, 296, 372, 456, 548, 648, 756, 872, 996, 1128, 1268, 1416, 1572, 1736, 1908, 2088, 2276, 2472, 2676, 2888, 3108, 3336, 3572, 3816, 4068, 4328, 4596, 4872, 5156, 5448, 5748, 6056, 6372, 6696, 7028, 7368, 7716, 8072, 8436, 8808, 9188
Offset: 1

Views

Author

Vincenzo Librandi, Dec 30 2008

Keywords

Comments

2*(fifth subdiagonal of triangle A144562).
Sequence gives values x of solutions (x, y) to the Diophantine equation x^3+28*x^2 = y^2. For a more comprehensive list of solutions see A155135.
For n >= 3, a(n - 1) is the number of checkmate positions with white queen and white king against black king on an n X n board. Reason: The black king can only be on the edge. There are 4*(4*n + 1) checkmate positions where the black king is in the corner, 4*(2*n + 4) checkmate positions where the black king is immediately adjacent to the corner square, and there are 4*(n - 4)*(n + 2) checkmate positions where the black king is on another edge square. That's a total of 4*n^2 + 16*n - 12 = a(n - 1) checkmate positions. - Felix Huber, Oct 29 2023

Crossrefs

Programs

Formula

a(n) = A155135(2n+8) = A155136(2n+7).
a(n) = 4*A028881(n+3).
G.f.: 4*(3 - x)*(3 - 2*x)/(1-x)^3.
a(n)= 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: 4*(-2 + (2 + 7*x + x^2)*exp(x)). - G. C. Greubel, Aug 23 2016
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/56 - cot(sqrt(7)*Pi)*Pi/(8*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 31/168 - cosec(sqrt(7)*Pi)*Pi/(8*sqrt(7)). (End)

Extensions

Edited and extended by Klaus Brockhaus, Jan 21 2009

A155135 Integers n such that n^3+28*n^2 is a square.

Original entry on oeis.org

-28, -27, -24, -19, -12, -3, 0, 8, 21, 36, 53, 72, 93, 116, 141, 168, 197, 228, 261, 296, 333, 372, 413, 456, 501, 548, 597, 648, 701, 756, 813, 872, 933, 996, 1061, 1128, 1197, 1268, 1341, 1416, 1493, 1572, 1653, 1736, 1821, 1908, 1997, 2088, 2181, 2276, 2373
Offset: 1

Views

Author

Klaus Brockhaus, Jan 21 2009

Keywords

Comments

Values x of solutions (x, y) to the Diophantine equation x^3+28*x^2 = y^2. Corresponding values y are in A155137.
Agrees with A155136 except for insertion of zero after a(6) = 3.

Examples

			For n = -19, n^3+28*n^2 = -6859+10108 = 3249 = 57^2 is a square.
For n = 0, n^3+28*n^2 = 0^3+28*0^2 = 0 = 0^2 is a square.
For n = 21; n^3+28*n^2 = 9261+12348 = 21609 = 147^2 is a square.
		

Crossrefs

Programs

  • Magma
    [ n: n in [ -30..2400] | IsSquare(n^3+28*n^2) ];
  • Mathematica
    CoefficientList[Series[-(28-57*x+27*x^2+8*x^6-11*x^7+3*x^9)/(1-x)^3,{x,0,60}],x] (* Vincenzo Librandi, Feb 22 2012 *)
    Select[Range[-30,2500],IntegerQ[Sqrt[#^3+28#^2]]&] (* or *) LinearRecurrence[ {3,-3,1},{-28,-27,-24,-19,-12,-3,0,8,21,36},60] (* Harvey P. Dale, Jan 10 2023 *)

Formula

G.f.: -(28-57*x+27*x^2+8*x^6-11*x^7+3*x^9)/(1-x)^3.
Showing 1-4 of 4 results.