cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A152913 Primes of the form n^4 + (n+1)^4.

Original entry on oeis.org

17, 97, 337, 881, 3697, 10657, 16561, 49297, 66977, 89041, 149057, 847601, 988417, 1146097, 1972097, 2522257, 2836961, 3553777, 3959297, 4398577, 5385761, 7166897, 11073217, 17653681, 32530177, 41532497, 44048497, 55272097, 61627201
Offset: 1

Views

Author

Vincenzo Librandi, Dec 15 2008

Keywords

Comments

Also primes in A008514.
Sequence is disjoint to A005385: If n^4 + (n+1)^4 is a prime p, then (p-1)/2 = n^4 + 2*n^3 + 3*n^2 + 2*n. (p-1)/2 = 8 for n = 1 and (p-1)/2 is divisible by n for n > 1. In each case, (p-1)/2 is not prime.

Examples

			For n=3, n^4 + (n+1)^4 = 337 is prime and (337-1)/2 = 168 = 3*56 is not prime.
		

Crossrefs

Programs

  • Magma
    [ a: n in [1..80] | IsPrime(a) where a is n^4+(n+1)^4 ];
  • Mathematica
    f[n_]:=n^4+(n+1)^4;lst={};Do[a=f[n];If[PrimeQ[a],AppendTo[lst,a]],{n,0,6!}];lst (* Vladimir Joseph Stephan Orlovsky, May 30 2009 *)
    Select[Table[n^4+(n+1)^4,{n,0,700}],PrimeQ]
    Select[Total/@Partition[Range[100]^4,2,1],PrimeQ] (* Harvey P. Dale, Sep 29 2023 *)

Extensions

Edited and extended by Klaus Brockhaus, Dec 21 2008

A174156 Numbers n such that n^32+(n+1)^32 is a prime.

Original entry on oeis.org

8, 10, 12, 22, 100, 146, 154, 219, 246, 269, 287, 309, 336, 373, 392, 398, 423, 440, 449, 476, 515, 540, 557, 628, 671, 693, 715, 733, 746, 780, 848, 879, 913, 924, 926, 937, 974, 975, 1130, 1191, 1193, 1198, 1204, 1260, 1272, 1316, 1378, 1400, 1414, 1451
Offset: 1

Views

Author

Vincenzo Librandi, Mar 10 2010

Keywords

Crossrefs

Programs

A174157 Numbers n such that n^64+(n+1)^64 is a prime.

Original entry on oeis.org

95, 302, 443, 546, 755, 850, 878, 962, 983, 988, 1014, 1026, 1349, 1433, 1541, 1711, 1735, 1897, 1901, 1958, 1961, 1966, 2052, 2058, 2070, 2096, 2142, 2167, 2170, 2208, 2333, 2421, 2471, 2490, 2503, 2527, 2571, 2637, 2643, 2813, 2820, 2885, 2994
Offset: 1

Views

Author

Vincenzo Librandi, Mar 10 2010

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [0..2000] | IsPrime(n^64+(n+1)^64)]
  • Mathematica
    lst={}; Do[If[PrimeQ[n^64+(n+1)^64], AppendTo[lst, n]], {n, 3000}]; lst (* Vincenzo Librandi_, Aug 31 2012 *)
    Position[Total/@Partition[Range[3000]^64,2,1],?(PrimeQ[#]&)]//Flatten (* _Harvey P. Dale, Aug 01 2021 *)

A215431 Numbers n such that n^128+(n+1)^128 is a prime.

Original entry on oeis.org

31, 37, 65, 191, 255, 287, 359, 786, 836, 1178, 1229, 1503, 1601, 1609, 2093, 2103, 2254, 2307, 2471, 2934, 2978, 3215, 3220, 3363, 3402, 3705, 3724, 3892, 3894, 3976, 4094, 4478, 4490, 4535, 4566, 4683, 4749, 4752, 4789, 4918, 5064, 6061, 6162, 6167
Offset: 1

Views

Author

Vincenzo Librandi, Aug 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[7000], PrimeQ[#^128 + (# + 1)^128] &]

A215432 Numbers n such that n^256+(n+1)^256 is a prime.

Original entry on oeis.org

85, 86, 157, 190, 195, 421, 504, 539, 621, 895, 1018, 1159, 1314, 1463, 1482, 1538, 1959, 2036, 2368, 2537, 2618, 2651, 3085, 3148, 3205, 3230, 3347, 3370, 3807, 4061, 4089, 4448, 4641, 4697, 4723, 4851, 4945
Offset: 1

Views

Author

Vincenzo Librandi, Aug 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], PrimeQ[#^256 + (# + 1)^256] &];

A215433 Numbers n such that n^512 + (n+1)^512 is a prime.

Original entry on oeis.org

59, 864, 1455, 1723, 2118, 2172, 2460, 2851, 2916, 2971, 3193, 3476, 3747, 3782, 3795
Offset: 1

Views

Author

Vincenzo Librandi, Aug 31 2012

Keywords

Crossrefs

Programs

A274234 Numbers n such that n^1024 + (n+1)^1024 is prime.

Original entry on oeis.org

1078, 2020, 2471, 3255, 4200, 5135, 5185, 6218, 6823, 7220, 8416, 9003, 9008, 9267, 9396, 9689, 10316, 11150, 11250, 11543, 11652, 12960, 14021, 14201, 16523, 16751, 17006, 17054, 17747, 17874, 18157, 18640, 18834, 20478, 20481, 20794, 21147, 22166, 22608, 22638, 24450, 24677, 24894, 25709
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The first five terms are certified primes, according to: factordb/certoverview.php. The others are probable primes. - Lewis Baxter, Jan 05 2021

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^1024 + (n+1)^1024)]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^1024 + (#+1)^1024] &]
  • PARI
    for(n=1, 10000, if(isprime(n^1024 + (n+1)^1024), print1(n, ", ")))
    

A274235 Numbers n such that n^2048 + (n+1)^2048 is prime.

Original entry on oeis.org

754, 1289, 1368, 1813, 3159, 3280, 3301, 4976, 6204, 6283, 6723, 6904, 7141, 10246, 11417, 13268, 15456, 19428, 19683, 19698, 20298, 21484, 22543, 23702, 23815, 24747, 27010, 32319, 34133, 36201, 37030, 39438, 41292, 44472, 47623, 50198, 51031, 51370, 51521, 52628, 53073, 53309, 53767, 55911, 56630, 59424
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The terms correspond only to probable primes.

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^2048 + (n+1)^2048)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^2048 + (#+1)^2048] &]
  • PARI
    for(n=1, 10000, if(isprime(n^2048 + (n+1)^2048), print1(n, ", ")))
    

A274236 Numbers k such that k^4096 + (k+1)^4096 is prime.

Original entry on oeis.org

311, 2741, 3582, 5293, 6289, 12080, 14082, 16886, 17971, 19936, 21454, 21486, 26652, 26904, 28314, 34693, 35778, 36292, 40868, 43819, 46356, 46467, 49653, 53996, 57150, 58169, 64937, 67398, 77383, 82577, 86031, 86102, 87352, 87684, 89030, 93340, 95346, 97320, 98191, 111483, 113947, 118052, 125442, 125836, 126157, 127832, 130794
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The terms correspond only to probable primes.

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^4096 + (n+1)^4096)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^4096 + (#+1)^4096] &]
  • PARI
    for(n=1, 10000, if(isprime(n^4096 + (n+1)^4096), print1(n, ", ")))
    

A274237 Numbers k such that k^8192 + (k+1)^8192 is prime.

Original entry on oeis.org

3508, 5209, 13428, 15347, 16339, 17779, 22548, 37726, 40408
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Jun 15 2016

Keywords

Comments

The terms correspond only to probable primes.

Crossrefs

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n^8192 + (n+1)^8192)]
  • Mathematica
    Select[Range[1, 10000], PrimeQ[#^8192 + (#+1)^8192] &]
  • PARI
    for(n=1, 10000, if(isprime(n^8192 + (n+1)^8192), print1(n, ", ")))
    
Showing 1-10 of 12 results. Next