cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A080572 Number of ordered pairs (i,j), 0 <= i,j < n, for which (i & j) is nonzero, where & is the bitwise AND operator.

Original entry on oeis.org

0, 0, 1, 2, 7, 8, 15, 24, 37, 38, 49, 62, 81, 98, 121, 146, 175, 176, 195, 216, 247, 272, 307, 344, 387, 420, 463, 508, 559, 608, 663, 720, 781, 782, 817, 854, 909, 950, 1009, 1070, 1141, 1190, 1257, 1326, 1405, 1478, 1561, 1646, 1737, 1802, 1885, 1970, 2065, 2154
Offset: 0

Views

Author

Richard Bean, Feb 22 2003

Keywords

Comments

Conjectured to be less than or equal to lcs(n) (see sequence A063437). The value of a(2^n) is that given in Stinson and van Rees and the value of a(2^n-1) is that given in Fu, Fu and Liao. This function gives an easy way to generate these two constructions.
From Gus Wiseman, Mar 30 2019: (Start)
Also the number of ordered pairs of positive integers up to n with at least one binary carry. A binary carry of two positive integers is an overlap of the positions of 1's in their reversed binary expansion. For example, the a(2) = 1 through a(6) = 15 ordered pairs are:
(1,1) (1,1) (1,1) (1,1) (1,1)
(2,2) (1,3) (1,3) (1,3)
(2,2) (2,2) (1,5)
(2,3) (2,3) (2,2)
(3,1) (3,1) (2,3)
(3,2) (3,2) (3,1)
(3,3) (3,3) (3,2)
(4,4) (3,3)
(3,5)
(4,4)
(4,5)
(5,1)
(5,3)
(5,4)
(5,5)
(End)
a(n) is also the number of even elements in the n X n symmetric Pascal matrix. - Stefano Spezia, Nov 14 2022

References

  • C. Fu, H. Fu and W. Liao, A new construction for a critical set in special Latin squares, Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, Florida, 1995), Congressus Numerantium, Vol. 110 (1995), pp. 161-166.
  • D. R. Stinson and G. H. J. van Rees, Some large critical sets, Proceedings of the Eleventh Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, Manitoba, 1981), Congressus Numerantium, Vol. 34 (1982), pp. 441-456.

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember; local t;
    if n <= 1 then 0
    elif (n mod 2) =  0 then 3*f(n/2)+(n/2)^2
    else t:=(n-1)/2; f(t)+2*f(t+1)+t^2-1; fi; end;
    [seq(f(n),n=0..100)]; # N. J. A. Sloane, Jul 01 2017
  • Mathematica
    a[0] = a[1] = 0; a[n_] := a[n] = If[EvenQ[n], 3*a[n/2] + n^2/4, 2*a[(n-1)/2 + 1] + a[(n-1)/2] + (1/4)*(n-1)^2 - 1];
    Array[a, 60, 0] (* Jean-François Alcover, Dec 09 2017, from Dover's formula *)
    Table[Length[Select[Tuples[Range[n-1],2],Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,20}] (* Gus Wiseman, Mar 30 2019 *)

Formula

a(2^n) = 4^n-3^n = A005061(n); a(2^n+1) = 4^n-3^n+1 = A155609(n); a(2^n-1) = 4^n-3^n-2^(n+1)+3.
a(0)=a(1)=0, a(2n) = 3a(n)+n^2, a(2n+1) = a(n)+2a(n+1)+n^2-1. This was proved by Jeremy Dover. - Ralf Stephan, Dec 08 2004
a(n) = (A325104(n) - n)/2. - Gus Wiseman, Mar 30 2019

A155610 5^n - 3^n + 1.

Original entry on oeis.org

1, 3, 17, 99, 545, 2883, 14897, 75939, 384065, 1933443, 9706577, 48650979, 243609185, 1219108803, 6098732657, 30503229219, 152544843905, 762810312963, 3814309845137, 19072324066659, 95363944856225, 476826697849923
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 26 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-5*x)-1/(1-3*x)+1/(1-x).
E.g.f.: e^(5*x)-e^(3*x)+e^x.
a(n) = 8*a(n-1)-15*a(n-2)+8 with a(0)=1, a(1)=3. - Vincenzo Librandi, Jul 21 2010
a(0)=1, a(1)=3, a(2)=17, a(n)=9*a(n-1)-23*a(n-2)+15*a(n-3). - Harvey P. Dale, Jan 06 2012

A155612 7^n - 3^n + 1.

Original entry on oeis.org

1, 5, 41, 317, 2321, 16565, 116921, 821357, 5758241, 40333925, 282416201, 1977149597, 13840755761, 96887416085, 678218289881, 4747547161037, 33232887522881, 232630384847045, 1628413210489961, 11398894023111677
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 26 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-7*x)-1/(1-3*x)+1/(1-x).
E.g.f.: e^(7*x)-e^(3*x)+e^x.
a(n) = 10*a(n-1)-21*a(n-2)+12 with a(0)=1, a(1)=5. - Vincenzo Librandi, Jul 21 2010

A155613 8^n - 3^n + 1.

Original entry on oeis.org

1, 6, 56, 486, 4016, 32526, 261416, 2094966, 16770656, 134198046, 1073682776, 8589757446, 68718945296, 549754219566, 4398041728136, 35184357739926, 281474933663936, 2251799684545086, 18014398122061496, 144115186913594406
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 26 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-8*x)-1/(1-3*x)+1/(1-x).
E.g.f.: e^(8*x)-e^(3*x)+e^x.
a(n) = 11*a(n-1)-24*a(n-2)+14 with a(0)=1, a(1)=6. - Vincenzo Librandi, Jul 21 2010

A155614 9^n - 3^n + 1.

Original entry on oeis.org

1, 7, 73, 703, 6481, 58807, 530713, 4780783, 43040161, 387400807, 3486725353, 31380882463, 282429005041, 2541864234007, 22876787671993, 205891117745743, 1853020145805121, 16677181570526407, 150094634909578633
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 26 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-9*x)-1/(1-3*x)+1/(1-x).
E.g.f.: e^(9*x)-e^(3*x)+e^x.
a(n) = 12*a(n-1)-27*a(n-2)+16 with a(0)=1, a(1)=7. - Vincenzo Librandi, Jul 21 2010

A155615 a(n) = 10^n - 3^n + 1.

Original entry on oeis.org

1, 8, 92, 974, 9920, 99758, 999272, 9997814, 99993440, 999980318, 9999940952, 99999822854, 999999468560, 9999998405678, 99999995217032, 999999985651094, 9999999956953280, 99999999870859838, 999999999612579512
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 26 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-10*x)-1/(1-3*x)+1/(1-x).
E.g.f.: e^(10*x)-e^(3*x)+e^x.
a(n) = 13*a(n-1)-30*a(n-2)+18 with a(0)=1, a(1)=8. - Vincenzo Librandi, Jul 21 2010

A155616 5^n + 4^n - 1.

Original entry on oeis.org

1, 8, 40, 188, 880, 4148, 19720, 94508, 456160, 2215268, 10814200, 53022428, 260917840, 1287811988, 6371951080, 31591319948, 156882857920, 780119322308, 3883416742360, 19348364235068, 96466943268400, 481235204714228
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 27 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-5*x)+1/(1-4*x)-1/(1-x).
E.g.f.: e^(5*x)+e^(4*x)-e^x.
a(n) = 9*a(n-1)-20*a(n-2)-12 with a(0)=1, a(1)=8 - Vincenzo Librandi, Jul 21 2010

A155617 a(n) = 6^n + 4^n - 1.

Original entry on oeis.org

1, 9, 51, 279, 1551, 8799, 50751, 296319, 1745151, 10339839, 61514751, 366991359, 2193559551, 13127802879, 78632599551, 471258726399, 2825404874751, 16943839313919, 101628676145151, 609634617917439, 3657257951690751
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 27 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-6*x)+1/(1-4*x)-1/(1-x).
E.g.f.: exp(6*x) + exp(4*x) - exp(x).
a(n) = 10*a(n-1)-24*a(n-2) -15, n>1 - Gary Detlefs, Jun 21 2010
a(n) = 11*a(n-1)-34*a(n-2)+24*a(n-3). - Vincenzo Librandi, Feb 16 2013

A155618 a(n) = 7^n+4^n-1^n.

Original entry on oeis.org

1, 10, 64, 406, 2656, 17830, 121744, 839926, 5830336, 40615750, 283523824, 1981521046, 13858064416, 96956119270, 678491508304, 4748635251766, 33237225536896, 232647693856390, 1628482317387184, 11399170063280086
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 27 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-7*x)+1/(1-4*x)-1/(1-x). E.g.f.: e^(7*x)+e^(4*x)-e^x.
a(n) = 11*a(n-1)-28*a(n-2)-18 with a(0)=1, a(1)=10 [Vincenzo Librandi, Jul 21 2010]
a(0)=1, a(1)=10, a(2)=64, a(n) = 12*a(n-1)-39*a(n-2)+28*a(n-3). - Harvey P. Dale, Feb 04 2014

A155619 8^n+4^n-1^n.

Original entry on oeis.org

1, 11, 79, 575, 4351, 33791, 266239, 2113535, 16842751, 134479871, 1074790399, 8594128895, 68736253951, 549822922751, 4398314946559, 35185445830655, 281479271677951, 2251816993554431, 18014467228958719, 144115462953762815
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 27 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[8^n+4^n-1,{n,0,30}] (* or *) LinearRecurrence[{13,-44,32},{1,11,79},30] (* Harvey P. Dale, Jun 19 2013 *)

Formula

G.f.: 1/(1-8*x)+1/(1-4*x)-1/(1-x). E.g.f.: e^(8*x)+e^(4*x)-e^x.
a(n)=12*a(n-1)-32*a(n-2)-21 with a(0)=1, a(1)=11 [From Vincenzo Librandi, Jul 21 2010]
a(0)=1, a(1)=11, a(2)=79, a(n)=13*a(n-1)-44*a(n-2)+32*a(n-3). - Harvey P. Dale, Jun 19 2013
Showing 1-10 of 11 results. Next