cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A156021 Numbers k such that k^1 + k^2 + k^3 + k^4 -+ 1 are twin primes.

Original entry on oeis.org

1, 2, 12, 30, 44, 50, 63, 74, 110, 165, 177, 222, 239, 254, 327, 492, 519, 804, 942, 954, 1007, 1343, 1352, 1520, 1770, 2375, 2450, 2658, 2795, 2945, 2994, 3075, 3332, 3527, 3548, 3803, 3915, 3935, 4025, 4653, 4704, 4785, 4808, 4862, 5270, 5310, 5364, 5370
Offset: 1

Views

Author

Keywords

Examples

			2 is a term since 2 + 2^2 + 2^3 + 2^4 - 1 = 29 and 2 + 2^2 + 2^3 + 2^4 + 1 = 31 are twin primes.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..6*10^3] | IsPrime(n^4+n^3+n^2+n-1) and IsPrime(n^4+n^3+n^2+n+1)]; // Vincenzo Librandi, Dec 26 2015
  • Mathematica
    lst={};Do[p=(n^1+n^2+n^3+n^4);If[PrimeQ[p-1]&&PrimeQ[p+1],AppendTo[lst,n]],{n,8!}];lst

A156026 Lesser of twin primes of the form k^1 + k^2 + k^3 + k^4 - 1.

Original entry on oeis.org

3, 29, 22619, 837929, 3835259, 6377549, 16007039, 30397349, 147753209, 745720139, 987082979, 2439903209, 3276517919, 4178766089, 11468884079, 58714318139, 72695416559, 418374010739, 788251653689, 829180295189
Offset: 1

Views

Author

Keywords

Comments

The corresponding values of k are 1, 2, 12, 30, 44, ... (A156021).

Examples

			29 is a term since 2 + 2^2 + 2^3 + 2^4 - 1 = 29 and 2 + 2^2 + 2^3 + 2^4 + 1 = 31 are twin primes.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=(n^1+n^2+n^3+n^4);If[PrimeQ[p1=p-1]&&PrimeQ[p2=p+1],AppendTo[lst,p1]],{n,8!}];lst
    Select[Table[n+n^2+n^3+n^4-1,{n,1000}],AllTrue[{#,#+2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 17 2019 *)

A156027 Greater of twin primes pairs of the form k^1 + k^2 + k^3 + k^4 - 1.

Original entry on oeis.org

5, 31, 22621, 837931, 3835261, 6377551, 16007041, 30397351, 147753211, 745720141, 987082981, 2439903211, 3276517921, 4178766091, 11468884081, 58714318141, 72695416561, 418374010741, 788251653691, 829180295191, 1029317536801, 3255573820801, 3343706188681
Offset: 1

Views

Author

Keywords

Comments

The corresponding values of k: 1, 2, 12, 30, 44, 50, 63, 74, 110, 165, 177, 222, 239, 254, 327, 492, 519, 804, 942, 954,...

Examples

			2 + 2^2 + 2^3 + 2^4 - 1 = 29 and 2 + 2^2 + 2^3 + 2^4 + 1 = 31.
		

Crossrefs

Programs

  • Magma
    [p+2:k in [1..1500] | IsPrime(p) and IsPrime(p+2) where p is k^1+k^2+k^3+k^4-1]; // Marius A. Burtea, Dec 21 2019
  • Mathematica
    lst={};Do[p=(n^1+n^2+n^3+n^4);If[PrimeQ[p1=p-1]&&PrimeQ[p2=p+1],AppendTo[lst,p2]],{n,8!}];lst

Extensions

More terms from Amiram Eldar, Dec 21 2019

A188269 Prime numbers of the form k^4 + k^3 + 4*k^2 + 7*k + 5 = k^4 + (k+1)^3 + (k+2)^2.

Original entry on oeis.org

5, 59, 348077, 10023053, 30414227, 55367063, 72452489, 85856933, 109346759, 182679473, 254112143, 305966369, 433051637, 727914497, 2029672529, 4178961167, 6528621257, 8346080159, 12783893813, 17220494579, 17993776223, 19618171127, 23673478589, 29448235247, 43333033853
Offset: 1

Views

Author

Rafael Parra Machio, Jun 09 2011

Keywords

Comments

Bunyakovsky's conjecture implies that this sequence is infinite. - Charles R Greathouse IV, Jun 09 2011
All the terms in the sequence are congruent to 2 mod 3. - K. D. Bajpai, Apr 11 2014

Examples

			5 is prime and appears in the sequence because 0^4 + 1^3 + 2^2 = 5.
59 is prime and appears in the sequence because 2^4 + 3^3 + 4^2 = 59.
348077 = 24^4 + (24+1)^3 + (24+2)^2 = 24^4 + 25^3 + 26^2.
10023053 = 56^4 + (56+1)^3 + (56+2)^2 = 56^4 + 57^3 + 58^2.
		

Crossrefs

Programs

  • Maple
    select(isprime, [n^4+(n+1)^3+(n+2)^2$n=0..1000])[]; # K. D. Bajpai, Apr 11 2014
  • Mathematica
    lst={};Do[If[PrimeQ[p=n^4+n^3+4*n^2+7*n+5], AppendTo[lst, p]],{n,200}];lst
    Select[Table[n^4+n^3+4n^2+7n+5,{n,500}],PrimeQ] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    for(n=1,1e3,if(isprime(k=n^4+n^3+4*n^2+7*n+5),print1(k", "))) \\ Charles R Greathouse IV, Jun 09 2011

Extensions

Duplicate Mathematica program deleted by Harvey P. Dale, Jun 19 2011
Missing term 5 inserted by Alois P. Heinz, Sep 21 2024
Showing 1-4 of 4 results.