cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A158015 Primes p such that 6*p-1 is also prime.

Original entry on oeis.org

2, 3, 5, 7, 17, 19, 23, 29, 43, 47, 53, 59, 67, 103, 107, 109, 113, 127, 137, 157, 163, 197, 199, 227, 229, 239, 269, 283, 313, 317, 347, 359, 373, 379, 383, 389, 397, 439, 443, 449, 457, 463, 467, 523, 569, 577, 593, 599, 613, 617, 647, 653, 709, 733, 743, 773
Offset: 1

Views

Author

Roger L. Bagula, Mar 11 2009

Keywords

Crossrefs

Cf. A005382 for the type 2p-1, A062737 for 4p-1, A158016 for 8p-1, A158017 for 10p-1.
Primes in A024898, i.e., intersection of A024898 with A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(800) | IsPrime(6*p-1)]; // Vincenzo Librandi, Apr 14 2013
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[(6 # - 1)]&] (* Vincenzo Librandi, Apr 14 2013 *)

Extensions

Edited by the Associate Editors of the OEIS, Apr 22 2009

A023237 Primes p such that 10*p + 1 is also prime.

Original entry on oeis.org

3, 7, 13, 19, 31, 43, 97, 103, 109, 151, 157, 181, 193, 211, 241, 271, 337, 349, 367, 409, 421, 439, 487, 523, 547, 571, 601, 613, 631, 691, 733, 769, 811, 823, 829, 883, 937, 1009, 1021, 1033, 1039, 1063, 1069, 1117, 1201, 1249, 1279, 1291, 1459, 1483, 1489
Offset: 1

Views

Author

Keywords

Comments

Primes which with a 1 appended stay prime.
Corresponding values of 10n + 1 in A055781. - Jaroslav Krizek, Jul 14 2010
Subsequence of A024912. - Michel Marcus, May 21 2014

Crossrefs

Cf. A024912, A055781, A105435, A005384 (2*p + 1), A158017 (10*p - 1).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(10*n+1)]; // Vincenzo Librandi, Nov 20 2010
    
  • Magma
    [p: p in PrimesUpTo(1100)| IsPrime(10*p+1)]; // Vincenzo Librandi, May 21 2014
  • Maple
    with(numtheory); for i from 1 to 500 do if isprime(10*ithprime(i)+1) then printf(`%d,`, ithprime(i)) fi: od: # James Sellers, Apr 09 2005
  • Mathematica
    Select[Prime[Range[ 240]], PrimeQ[FromDigits[Join[IntegerDigits[ # ], {1}]]] &] (* Robert G. Wilson v, Apr 09 2005 *)
    Select[Prime[Range[900]], PrimeQ[10 # + 1] &] (* Vincenzo Librandi, May 21 2014 *)

Extensions

Edited by N. J. A. Sloane at the suggestion of M. F. Hasler, Aug 24 2007

A158016 Primes p such that 8*p-1 is also prime.

Original entry on oeis.org

3, 13, 19, 61, 79, 103, 163, 181, 193, 223, 229, 313, 331, 349, 409, 433, 439, 541, 571, 613, 619, 691, 751, 769, 853, 859, 919, 991, 1021, 1033, 1039, 1321, 1381, 1423, 1483, 1543, 1549, 1621, 1699, 1759, 1801, 1861, 1873, 1879, 1951, 1999, 2011, 2029, 2113
Offset: 1

Views

Author

Roger L. Bagula, Mar 11 2009

Keywords

Crossrefs

Cf. A005382 for the type 2p-1, A062737 for 4p-1, A158015 for 6p-1, A158017 for 10p-1.

Programs

  • Magma
    [p: p in PrimesUpTo(2200) | IsPrime(8*p - 1)]; // Vincenzo Librandi, Apr 14 2013
  • Mathematica
    Select[Prime[Range[600]], PrimeQ[(8 # - 1)]&] (* Vincenzo Librandi, Apr 14 2013 *)

Extensions

Edited by the Associate Editors of the OEIS, Apr 22 2009

A276732 Primes p such that (p + 1)/10 is also prime.

Original entry on oeis.org

19, 29, 109, 229, 409, 709, 829, 1009, 1069, 1129, 1489, 1669, 1789, 2269, 2389, 2689, 3109, 3169, 3469, 3529, 3889, 4789, 4909, 5209, 5569, 5689, 5869, 6469, 6529, 6829, 8089, 8209, 8269, 8389, 8629, 9109, 9769, 9829, 10909, 12289, 12589, 12829, 12889, 13009, 13669, 13729, 14389
Offset: 1

Views

Author

Zak Seidov, Sep 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 1800, PrimeQ[(# + 1)/10] &] (* Michael De Vlieger, Sep 16 2016 *)

Formula

a(n) = 10*A158017(n)-1.
Showing 1-4 of 4 results.