cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A055781 Primes q of the form q = 10p + 1, where p is also prime.

Original entry on oeis.org

31, 71, 131, 191, 311, 431, 971, 1031, 1091, 1511, 1571, 1811, 1931, 2111, 2411, 2711, 3371, 3491, 3671, 4091, 4211, 4391, 4871, 5231, 5471, 5711, 6011, 6131, 6311, 6911, 7331, 7691, 8111, 8231, 8291, 8831, 9371, 10091, 10211, 10331, 10391, 10631
Offset: 1

Views

Author

Labos Elemer, Jul 13 2000

Keywords

Comments

Corresponding values of p in A023237. - Jaroslav Krizek, Jul 14 2010
From Sergey Pavlov, Jun 14 2017: (Start)
Let a, b, and c be prime numbers such that c = 10b + 1 = 10 * (10a + 1) + 1. Then c = 311, b = 31, a = 3. (There are no other solutions since any prime p > 3 is either of the form 3k + 1 or 3k - 1. In other words, while a > 3 and a, b are primes, a == 1 (mod 3), b == -1 (mod 3), whereas c == 0 (mod 3).)
So is for any similar sequence of primes (of the form kn + 1) where 2k + 1 == 0 (mod 3), e.g., for A002144: the equation of the form c = kb + 1 = k * (ka + 1) + 1 while a, b, c are primes could have the only solution iff a = 3 (but also could have not).
(End) [This comment needs to be rewritten. - N. J. A. Sloane, Feb 18 2019]

Examples

			1031 = 103*10 + 1, 1 appended to 103.
		

Crossrefs

Programs

  • Maple
    select(isprime, map(t-> 10*t+1, select(isprime, [3,seq(i,i=7..2000,6)]))); # Robert Israel, Jun 13 2017
  • Mathematica
    Select[10Prime[Range[200]]+1,PrimeQ]  (* Harvey P. Dale, Feb 04 2011 *)
  • PARI
    is(n)=n%10==1 && isprime(n) && isprime(n\10) \\ Charles R Greathouse IV, Jun 17 2017

A075704 p and 12*p+1 are both primes.

Original entry on oeis.org

3, 5, 13, 19, 23, 29, 31, 59, 61, 71, 73, 83, 89, 101, 103, 139, 149, 191, 199, 223, 229, 233, 269, 271, 281, 293, 311, 379, 383, 401, 409, 433, 463, 479, 503, 523, 569, 601, 631, 643, 661, 691, 719, 751, 761, 773, 811, 829, 839, 863, 883, 929, 953, 1009, 1013
Offset: 0

Views

Author

Jani Melik, Oct 02 2002

Keywords

Examples

			5 is a prime and 12*5+1=61 is also a prime. 13 and 12*13+1=157 are both primes...
		

Crossrefs

Programs

  • Maple
    ts_m_sophie_germain_pras := proc(n); if (isprime(n)='true' and isprime(12*n+1)='true') then RETURN(n); fi; end: seq(ts_m_sophie_germain_pras(i), i=1..2030);
  • Mathematica
    Select[Prime[Range[300]],PrimeQ[12#+1]&] (* Harvey P. Dale, Feb 06 2012 *)

A105435 Primes which with a 1 prepended remain prime.

Original entry on oeis.org

3, 7, 13, 31, 37, 67, 73, 79, 97, 103, 109, 151, 163, 181, 193, 223, 229, 277, 283, 307, 367, 373, 409, 433, 439, 487, 499, 523, 571, 601, 607, 613, 619, 709, 733, 787, 811, 823, 877, 907, 997, 1069, 1087, 1093, 1117, 1171, 1213, 1279, 1321, 1399, 1423, 1447
Offset: 1

Views

Author

Lekraj Beedassy, Apr 08 2005

Keywords

Crossrefs

Cf. A023237.

Programs

  • Maple
    with(numtheory); for i from 1 to 500 do if isprime(10^(ceil(log[10](ithprime(i))))+ithprime(i)) then printf(`%d,`, ithprime(i)) fi: od: # James Sellers, Apr 09 2005
  • Mathematica
    Select[ Prime[ Range[ 230]], PrimeQ[ FromDigits[ Join[{1}, IntegerDigits[ # ]]]] &] (* Robert G. Wilson v, Apr 09 2005 *)
    Select[Prime[Range[250]],PrimeQ[10^IntegerLength[#]+#]&] (* Harvey P. Dale, May 30 2023 *)

Extensions

Corrected and extended by Robert G. Wilson v and James Sellers, Apr 09 2005

A228857 Odd primes p > 3 for which 14*p+1 is also prime.

Original entry on oeis.org

5, 17, 47, 53, 59, 83, 107, 113, 149, 167, 173, 239, 269, 353, 419, 443, 449, 503, 509, 563, 587, 599, 647, 659, 677, 719, 797, 827, 929, 947, 977, 983, 1097, 1103, 1109, 1187, 1193, 1223, 1229, 1259, 1289, 1367, 1409, 1427, 1433, 1439, 1493, 1523, 1667
Offset: 1

Views

Author

Ant King, Sep 06 2013

Keywords

Comments

In 1823, Legendre proved that the first case of Fermat’s Last Theorem is true for all exponents that are members of this sequence (see Ribenboim’s reference, p.112).

Examples

			As both 5 and 14*5 + 1 = 71 are prime, then 5 is a member of this sequence.
		

References

  • Paulo Ribenboim; Fermat’s Last Theorem For Amateurs, Springer-Verlag, New York, Inc., (1999).

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(5,2000) |IsPrime(14*p+1)]; // Vincenzo Librandi, Sep 18 2016
    
  • Mathematica
    Select[Prime[Range[3,1667]],PrimeQ[14#+1] &]
  • PARI
    lista(nn) = forprime(p=5, nn, if(isprime(14*p+1), print1(p, ", "))); \\ Altug Alkan, Sep 18 2016

A243962 Primes p such that 10p + 1, 100p + 1 and 1000p + 1 are also primes.

Original entry on oeis.org

7, 13, 19, 103, 823, 1021, 1579, 1867, 2503, 3331, 5779, 6871, 6949, 9007, 10093, 10399, 11317, 11743, 13327, 13381, 15859, 16657, 17539, 17659, 22189, 26317, 26557, 26821, 27397, 27943, 29209, 29383, 30211, 32443, 37309, 38287, 40213, 40507, 44497, 47569, 47977
Offset: 1

Views

Author

K. D. Bajpai, Jun 16 2014

Keywords

Examples

			7 is in the sequence because 7 is prime, 10*7 + 1 = 71 is prime, 100*7 + 1 = 701 is prime, and 1000*7 + 1 = 7001 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A243962:= proc() local p; p:=ithprime(n); if isprime(10*p+1) and isprime(100*p+1) and isprime(1000*p+1) then RETURN (p); fi; end: seq(A243962 (), n=1..5000);
  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[10 # + 1] && PrimeQ[100 # + 1] && PrimeQ[1000 # + 1] &]

A326398 a(n) is the smallest k > 0 such that the concatenation prime(n)k is composite.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1
Offset: 1

Views

Author

David James Sycamore, Jun 07 2020

Keywords

Comments

a(n) can only be 1 or 2 for any n >= 1. It appears that there are many more primes for which k = 1 than those for which k = 2 (~ 91% of the first 10^7 primes have k = 1).

Examples

			a(1) = 1 because 21 is prime, a(2) = 2 because 31 is prime (as 3 is in A023237), and 32 is composite
		

Crossrefs

Programs

  • Maple
    P := proc (n)
    if isprime(10*ithprime(n)+1) then return 2 else 1;
    end if:
    end proc;
    P(50);
    seq(P(k), k = 1 .. 50);
  • Mathematica
    Table[k = 1; p = Prime[n]; While[PrimeQ[10^IntegerLength[k]*p + k], k++]; k, {n, 120}] (* Michael De Vlieger, Jun 30 2025 *)
  • PARI
    a(n) = my(k=1, p=Str(prime(n))); while (isprime(eval(concat(p, Str(k)))), k++); k; \\ Michel Marcus, Jun 07 2020

Formula

a(n) = 2 if prime(n) is in A023237, else a(n) = 1. [corrected by Chai Wah Wu, Jul 06 2020]

A356498 Primes p such that 100*p + 11 is also prime.

Original entry on oeis.org

2, 3, 23, 41, 83, 101, 107, 113, 137, 179, 233, 239, 251, 281, 293, 353, 359, 401, 419, 479, 503, 557, 563, 569, 587, 683, 701, 743, 809, 839, 857, 863, 941, 953, 977, 1049, 1091, 1103, 1193, 1217, 1277, 1283, 1361, 1367, 1427, 1487, 1499, 1523, 1607, 1619, 1847, 1871, 1877, 1889, 1907, 1949, 1973
Offset: 1

Views

Author

Daniel Blam, Aug 09 2022

Keywords

Comments

100*p + 11 has the effect of appending 11 to p.
Primes of the form 3*k + 1 are never in this sequence, as 100*(3*k + 1) + 11 can be simplified to 3*(100*k + 37).

Examples

			2 is a term, as 100*2 + 11 is 211, which are both prime.
101 is a term, as 100*101 + 11 is 10111 which are both prime.
		

Crossrefs

Cf. A000040, A002476 (primes of the form 3*k+1).
Similar to A023237.

Programs

  • Python
    from sympy import isprime
    print([k for k in range(2000) if isprime(100*k+11) and isprime(k)])
Showing 1-7 of 7 results.