cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A038800 Number of primes between 10n and 10n+9.

Original entry on oeis.org

4, 4, 2, 2, 3, 2, 2, 3, 2, 1, 4, 1, 1, 3, 1, 2, 2, 2, 1, 4, 0, 1, 3, 2, 1, 2, 2, 2, 2, 1, 1, 3, 0, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 3, 2, 1, 3, 1, 1, 2, 2, 0, 2, 0, 2, 1, 2, 2, 1, 2, 2, 3, 0, 1, 3, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 4, 1, 0, 3, 1, 1, 3, 0, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1
Offset: 0

Views

Author

Keywords

Comments

If n runs through the primes, the subsequence 2, 2, 2, 3, 1, 3, 2, 4, 2, 1, 3, 2, 1, 3, 1, 0, 2, 3, 2,... is created. - R. J. Mathar, Jul 19 2012
Since 431, 433, and 439 are all prime, a(43)=3. - Bobby Jacobs, Sep 25 2016

Crossrefs

Positions of 4's: {0} U A007811.
Cf. A098592.

Programs

  • Mathematica
    Table[Count[Range[10 n, 10 n + 9], p_ /; PrimeQ@ p], {n, 0, 105}] (* Michael De Vlieger, Sep 25 2016 *)
    Table[PrimePi[10n+9]-PrimePi[10n],{n,0,120}] (* Harvey P. Dale, May 04 2025 *)
  • PARI
    a(n) = primepi(10*n+9) - primepi(10*n); \\ Michel Marcus, Sep 26 2016

Extensions

a(43) corrected by Bobby Jacobs, Sep 25 2016
a(101) and a(104) corrected by Michael De Vlieger, Sep 25 2016

A023237 Primes p such that 10*p + 1 is also prime.

Original entry on oeis.org

3, 7, 13, 19, 31, 43, 97, 103, 109, 151, 157, 181, 193, 211, 241, 271, 337, 349, 367, 409, 421, 439, 487, 523, 547, 571, 601, 613, 631, 691, 733, 769, 811, 823, 829, 883, 937, 1009, 1021, 1033, 1039, 1063, 1069, 1117, 1201, 1249, 1279, 1291, 1459, 1483, 1489
Offset: 1

Views

Author

Keywords

Comments

Primes which with a 1 appended stay prime.
Corresponding values of 10n + 1 in A055781. - Jaroslav Krizek, Jul 14 2010
Subsequence of A024912. - Michel Marcus, May 21 2014

Crossrefs

Cf. A024912, A055781, A105435, A005384 (2*p + 1), A158017 (10*p - 1).

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(10*n+1)]; // Vincenzo Librandi, Nov 20 2010
    
  • Magma
    [p: p in PrimesUpTo(1100)| IsPrime(10*p+1)]; // Vincenzo Librandi, May 21 2014
  • Maple
    with(numtheory); for i from 1 to 500 do if isprime(10*ithprime(i)+1) then printf(`%d,`, ithprime(i)) fi: od: # James Sellers, Apr 09 2005
  • Mathematica
    Select[Prime[Range[ 240]], PrimeQ[FromDigits[Join[IntegerDigits[ # ], {1}]]] &] (* Robert G. Wilson v, Apr 09 2005 *)
    Select[Prime[Range[900]], PrimeQ[10 # + 1] &] (* Vincenzo Librandi, May 21 2014 *)

Extensions

Edited by N. J. A. Sloane at the suggestion of M. F. Hasler, Aug 24 2007

A175355 Noncomposite reverse concatenations of divisors of n, sorted by n.

Original entry on oeis.org

1, 31, 421, 71, 131, 191, 2551, 311, 391331, 431, 48241612864321, 911371, 971, 1031, 1091, 1173913931, 1511, 1571, 1811, 1931, 2111, 2411, 24412261421, 24719131, 2711, 289171, 29214673421, 3014371, 30910331, 32565251351, 3371, 3491, 3671
Offset: 1

Views

Author

Jaroslav Krizek, Apr 20 2010

Keywords

Examples

			For n = 9; a(9) = 391331 because A089374(9) = 39 and divisors of 39 are 1, 3, 13, 39; reverse concatenation of divisors A176558(21) = 391331 is noncomposite.
		

Crossrefs

Subsequence of A176558(n). Supersequence of A055781.

Programs

  • Maple
    rcd:= proc(n) local D,T,i;
      D:= sort(convert(numtheory:-divisors(n),list));
      T:= D[1];
      for i from 2 to nops(D) do
        T:= T + 10^(1+ilog10(T))*D[i]
      od;
      T
    end proc:
    select(t -> t=1 or isprime(t), map(rcd, [$1..1000])); # Robert Israel, Aug 12 2020

Formula

a(n) = A176558(A089374(n)).
a(n) = A069582(n-1), n>1. [R. J. Mathar, May 03 2010]

Extensions

Edited by Charles R Greathouse IV, Apr 30 2010

A214342 Count of the decimal descendants of the n-th prime.

Original entry on oeis.org

23, 22, 11, 23, 1, 14, 4, 40, 15, 6, 7, 13, 1, 14, 5, 0, 9, 16, 11, 4, 15, 1, 1, 0, 3, 10, 28, 0, 12, 0, 8, 1, 1, 9, 5, 1, 4, 1, 0, 2, 0, 6, 2, 5, 10, 19, 3, 5, 5, 6, 8, 5, 7, 0, 5, 3, 5, 8, 4, 1, 2, 5, 1, 2, 2, 0, 9, 5, 0, 7, 7, 2, 11, 9, 2, 2, 0, 0, 4, 28, 0, 7
Offset: 1

Views

Author

Alex Ratushnyak, Jul 12 2012

Keywords

Comments

Prime q is a decimal descendant of prime p if q = p*10+k and 0<=k<=9.
The number of direct decimal descendants is A038800(p).
a(n) is the total count of direct decimal descendants of the n-th prime that are also prime, plus their decimal descendants that are prime, and so on.
Conjecture: no terms bigger than 35 after a(8)=40.

Examples

			prime(3)=5 has eleven descendants: 53, 59, 593, 599, 5939, 59393, 59399, 593933, 593993, 5939333, 59393339. So a(3)=11. All candidates of the form 5nnn1 and 5nnn7 are divisible by 3.
prime(5)=11, the only decimal descendant of 11 that is prime is 113, and because there are no primes between 1130 and 1140, a(5)=1.
		

Crossrefs

Programs

  • Maple
    A214342 := proc(n)
        option remember;
        local a,p,k,d ;
        a := 0 ;
        p := ithprime(n) ;
        for k from 0 to 9 do
            d := 10*p+k ;
            if isprime(d) then
                a := a+1+procname(numtheory[pi](d)) ;
            end if;
        end do:
        return a;
    end proc: # R. J. Mathar, Jul 19 2012
  • Mathematica
    Table[t = {Prime[n]}; cnt = 0; While[t = Select[Flatten[Table[10*i + {1, 3, 7, 9}, {i, t}]], PrimeQ]; t != {}, cnt = cnt + Length[t]]; cnt, {n, 100}] (* T. D. Noe, Jul 24 2012 *)

A158014 Primes p such that (p-1)/8 is also prime.

Original entry on oeis.org

17, 41, 89, 137, 233, 569, 809, 857, 1049, 1097, 1193, 1433, 1913, 2153, 2777, 3209, 3449, 3593, 3833, 3929, 4073, 4457, 4793, 4937, 5273, 5417, 6089, 6473, 6569, 6857, 7433, 7529, 7577, 7817, 9209, 9497, 9833
Offset: 1

Views

Author

Roger L. Bagula, Mar 11 2009

Keywords

Crossrefs

Cf. A005385 for (p-1)/2, A090866 for (p-1)/4, A051644 for (p-1)/6, A055781 for (p-1)/10.

Programs

  • Mathematica
    Flatten[Table[If[PrimeQ[n] && PrimeQ[(n - 1)/8], n, {}], {n, 1, 10000}]]
    Select[Prime[Range[1500]], PrimeQ[(# - 1) / 8]&] (* Vincenzo Librandi, Apr 14 2013 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,(lim-1)\8, if(isprime(8*p+1), listput(v,8*p+1))); Vec(v) \\ Charles R Greathouse IV, Oct 20 2021

Formula

a(n)=8*A023228(n)+1. - R. J. Mathar, Mar 15 2009
a(n) >> n log^2 n. - Charles R Greathouse IV, Oct 21 2021

Extensions

Edited by the Associate Editors of the OEIS, Apr 22 2009

A158018 Primes p such that (p - 1)/12 is also prime.

Original entry on oeis.org

37, 61, 157, 229, 277, 349, 373, 709, 733, 853, 877, 997, 1069, 1213, 1237, 1669, 1789, 2293, 2389, 2677, 2749, 2797, 3229, 3253, 3373, 3517, 3733, 4549, 4597, 4813, 4909, 5197, 5557, 5749, 6037, 6277, 6829, 7213, 7573, 7717, 7933, 8293, 8629, 9013, 9133
Offset: 1

Views

Author

Roger L. Bagula, Mar 11 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[If[PrimeQ[n] && PrimeQ[(n - 1)/12], n, {}], {n, 1, 10000}]]
    Select[Prime[Range[1500]], PrimeQ[(# - 1) / 12]&] (* Vincenzo Librandi, Apr 14 2013 *)

Formula

a(n)=12*A075704(n)+1. [From R. J. Mathar, Mar 15 2009]

Extensions

Definition slightly rephrased - The Assoc. Eds. of the OEIS, Aug 30 2010
Showing 1-6 of 6 results.