cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A156071 Concatenation chain arising in A156069.

Original entry on oeis.org

3, 38, 381, 3816, 38165, 381654, 3816547, 38165472, 381654729
Offset: 1

Views

Author

Keywords

Comments

a(9) is a zeroless pandigital number in base 10, with 9 digits such that every k-digit substring ( 1 <= k <= 9 ) taken from the left, is divisible by k (see A163574). - Michel Marcus, Dec 01 2013

References

  • Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.

Crossrefs

A214437 Least numbers whose groups of 2,3,...,n digits taken from the left are divisible by 2,3,...,n.

Original entry on oeis.org

1, 10, 102, 1020, 10200, 102000, 1020005, 10200056, 102000564, 1020005640, 10200056405, 102006162060, 1020061620604, 10200616206046, 102006162060465, 1020061620604656, 10200616206046568, 108054801036000018, 1080548010360000180, 10805480103600001800
Offset: 1

Views

Author

Robin Garcia, Jul 17 2012

Keywords

Comments

The first 11 terms of the sequence are coincident with A078282.
a(6) is formed with 66,7 % zeros; A(5) with 60 %; a(7) with 57,1 %; a(4), a(8), a(10) and a(20) with 50 %.
a(n) is the first term of A144688 with n digits, except that A144688 includes zero as first term. - Franklin T. Adams-Watters, Jul 18 2012
There are 25 terms in the sequence; the 25-digit number 3608528850368400786036725 is the last number to satisfy the requirements. - Shyam Sunder Gupta, Aug 04 2013

Examples

			a(6) = 102000 because 10, 102, 1020, 10200 and 102000 are divisible by 2, 3, 4, 5 and 6.
There are nine one-digit numbers that are divisible by 1; the smallest is 1, so a(1)=1.
For two-digit numbers, the second digit must be even, i.e., 0,2,4,6,8 to make it divisible by 2, which gives 10 as the smallest number to satisfy the requirement, so a(2)=10. - _Shyam Sunder Gupta_, Aug 04 2013
		

Crossrefs

Programs

  • Mathematica
    a=Table[j, {j, 9}]; r=2; t={};
    While[!a == {}, n=Length[a]; nmin=Last[a]; k=1; b={};
    While[!k>n, z0=a[[k]]; Do[z=10*z0+j; If[Mod[z, r]==0, b=Append[b, z]], {j, 0, 9}]; k++]; AppendTo[t, nmin]; a=b; r++]; t (* Shyam Sunder Gupta, Aug 04 2013 *)

A305714 Number of finite sequences of positive integers of length n that are polydivisible and strictly pandigital.

Original entry on oeis.org

1, 1, 1, 2, 0, 0, 2, 0, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 08 2018

Keywords

Comments

A sequence q of length k is strictly pandigital if it is a permutation of {1,2,...,k}. It is polydivisible if Sum_{i = 1...m} 10^(m - i) * q_i is a multiple of m for all 1 <= m <= k.

Examples

			Sequence of sets of n-digit numbers that are weakly polydivisible and strictly pandigital is (with A = 10):
  {0}
  {1}
  {12}
  {123,321}
  {}
  {}
  {123654,321654}
  {}
  {38165472}
  {381654729}
  {381654729A}
		

Crossrefs

A305715 Irregular triangle whose rows are all finite sequences of positive integers that are polydivisible and strictly pandigital.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 2, 1, 1, 2, 3, 6, 5, 4, 3, 2, 1, 6, 5, 4, 3, 8, 1, 6, 5, 4, 7, 2, 3, 8, 1, 6, 5, 4, 7, 2, 9, 3, 8, 1, 6, 5, 4, 7, 2, 9, 10
Offset: 1

Views

Author

Gus Wiseman, Jun 08 2018

Keywords

Comments

A positive integer sequence q of length k is strictly pandigital if it is a permutation of {1,2,...,k}. It is polydivisible if Sum_{i = 1...m} 10^(m - i) * q_i is a multiple of m for all 1 <= m <= k.

Examples

			Triangle is:
  {1}
  {1,2}
  {1,2,3}
  {3,2,1}
  {1,2,3,6,5,4}
  {3,2,1,6,5,4}
  {3,8,1,6,5,4,7,2}
  {3,8,1,6,5,4,7,2,9}
  {3,8,1,6,5,4,7,2,9,10}
		

References

  • Matt Parker, Things to make and do in the fourth dimension, 2015, pages 7-9.

Crossrefs

Programs

  • Mathematica
    polyQ[q_]:=And@@Table[Divisible[FromDigits[Take[q,k]],k],{k,Length[q]}];
    Flatten[Table[Select[Permutations[Range[n]],polyQ],{n,8}]]

A158240 Smallest number made up of n consecutive digits such that every k-digit substring (k <= n) taken from the left is divisible by k (k=1..n).

Original entry on oeis.org

1, 10, 102, 3452, 24365, 123654, 7836542, 38165472, 381654720, 3816547290
Offset: 1

Views

Author

Lekraj Beedassy, Mar 14 2009

Keywords

Examples

			123654, for instance, is in the sequence because 1|1, 2|12, 3|123, 4|1236, 5|12365, 6|123654.
		

Crossrefs

Cf. A158242.

Extensions

a(4), a(5), a(7), a(9) corrected by Ray Chandler, Mar 21 2009

A331475 a(n) is the smallest n-digit number using each digit 0 to n-1 once, such that the numbers formed by its last k digits are divisible by k, (k = 1..n).

Original entry on oeis.org

0, 10, 102, 3012, 13240, 123540, 3516240, 16453720, 123567480, 9123567480
Offset: 1

Views

Author

Eduardo P. Feitosa, May 03 2020

Keywords

Comments

a(n) = A147636(n) for n=1, 2, 3, 9 and 10.

Examples

			a(3) = 3012 because 2, 12, 012, 3012 are divisible by 1, 2, 3, 4 and it is the least such number with distinct digits 0 to 3.
		

Crossrefs

Programs

  • Mathematica
    ok[n_] := AllTrue[Range@ IntegerLength@ n, Mod[ Mod[n, 10^#], #] == 0 &]; a[n_] := SelectFirst[ FromDigits /@ Permutations[Range[0, n-1]], # >= 10^(n-1) - 1 && ok[#] &]; Array[a, 10] (* Giovanni Resta, May 04 2020 *)

A334537 a(n) is the largest n-digit number using each digit 0 to n-1 once, such that the numbers formed by its last k digits are divisible by k, (k = 1..n).

Original entry on oeis.org

0, 10, 210, 3120, 43120, 543120, 6531420, 76351240, 876351240, 9876351240
Offset: 1

Views

Author

Eduardo P. Feitosa, May 05 2020

Keywords

Examples

			a(4) = 43120 because 0, 20, 120, 3120 and 43120 are divisible by 1, 2, 3, 4 and 5, and it is the largest such number with distinct digits 0 to 4.
		

Crossrefs

Showing 1-7 of 7 results.