cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A060229 Smaller member of a twin prime pair whose mean is a multiple of A002110(3)=30.

Original entry on oeis.org

29, 59, 149, 179, 239, 269, 419, 569, 599, 659, 809, 1019, 1049, 1229, 1289, 1319, 1619, 1949, 2129, 2309, 2339, 2549, 2729, 2789, 2969, 2999, 3119, 3299, 3329, 3359, 3389, 3539, 3929, 4019, 4049, 4229, 4259, 4649, 4799, 5009, 5099, 5279, 5519, 5639
Offset: 1

Views

Author

Labos Elemer, Mar 21 2001

Keywords

Comments

Equivalently, smaller of twin prime pair with primes in different decades.
Primes p such that p and p+2 are prime factors of Fibonacci(p-1) and Fibonacci(p+1) respectively. - Michel Lagneau, Jul 13 2016
The union of this sequence and A282326 gives A132243. - Martin Renner, Feb 11 2017
The union of {3,5}, A282321, A282323 and this sequence gives A001359. - Martin Renner, Feb 11 2017
The union of {3,5,7}, A282321, A282322, A282323, A282324, this sequence and A282326 gives A001097. - Martin Renner, Feb 11 2017
Number of terms less than 10^k, k=2,3,4,...: 2, 11, 72, 407, 2697, 19507, 146516, ... - Muniru A Asiru, Jan 29 2018

Examples

			For the pair {149,151} (149 + 151)/2 = 5*30.
		

Crossrefs

Programs

  • GAP
    Filtered(List([0..200], k -> 30*k-1), n -> IsPrime(n) and IsPrime(n+2));  # Muniru A Asiru, Feb 02 2018
  • Magma
    [p: p in PrimesUpTo(7000) | IsPrime(p+2) and p mod 30 eq 29 ]; // Vincenzo Librandi, Feb 13 2017
    
  • Maple
    isA060229 := proc(n)
        if modp(n+1,30) =0 and isprime(n) and isprime(n+2) then
            true;
        else
            false;
        end if;
    end proc:
    A060229 := proc(n)
        option remember;
        if n =1 then
            29;
        else
            for a from procname(n-1)+2 by 2 do
                if isA060229(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A060229(n),n=1..80) ; # R. J. Mathar, Feb 19 2017
  • Mathematica
    Select[Prime@ Range[10^3], PrimeQ[# + 2] && Mod[# + 1, 30] == 0 &] (* Michael De Vlieger, Jul 14 2016 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+2) && !((n+1) % 30); \\ Michel Marcus, Dec 11 2013
    

Extensions

Minor edits by Ray Chandler, Apr 02 2009

A158277 The lesser of twin prime pairs with each prime in a different century.

Original entry on oeis.org

599, 2999, 3299, 4799, 5099, 6299, 8999, 10499, 11699, 21599, 25799, 26699, 29399, 33599, 34499, 36899, 37199, 42899, 44699, 47699, 49199, 56099, 57899, 60899, 63599, 65099, 65699, 70199, 74099, 81899, 83399, 85199, 88799, 92399, 97499, 100799, 101999, 102299
Offset: 1

Views

Author

Ki Punches, Mar 15 2009

Keywords

Comments

The sequence is conjecturally infinite; note that those ending in 999 straddle millenia: A158861.
Since any prime greater than 3 is congruent to 1 or 5 modulo 6, a(n)+1 is divisible by 300 (see A001359). - Hartmut F. W. Hoft, May 18 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[100,110000,100],AllTrue[#+{1,-1},PrimeQ]&]-1 (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 21 2016 *)
    a158277[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[100, n, 100]], First[#]-Last[#]==2&]]
    a158277[105000] (* data *) (* Hartmut F. W. Hoft, May 18 2017 *)

Extensions

Corrected by Ray Chandler and R. J. Mathar, Apr 03 2009

A173976 Numbers m such that the concatenation of m and 999 is the lesser of twin primes, i.e., a millennium twin prime couple.

Original entry on oeis.org

2, 8, 101, 164, 179, 230, 272, 293, 326, 389, 410, 419, 443, 512, 524, 536, 659, 662, 773, 788, 794, 800, 818, 890, 920, 932, 989, 1028, 1058, 1136, 1187, 1238, 1271, 1292, 1310, 1346, 1466, 1490, 1550, 1577, 1583, 1823, 1838, 1856, 1865, 1913, 2003, 2075
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 04 2010

Keywords

Comments

Necessarily, m == 2 (mod 3).

Examples

			2 is a term: 2999 = prime(430), 2999+2 = 3001 = prime(431).
8 is a term: 8999 = prime(1117), 8999+2 = 9001 = prime(1118).
		

References

  • Richard K. Guy: Unsolved Problems in Number Theory, New York, Springer-Verlag, 1994.
  • Theo Kempermann: Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005.
  • Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983.

Crossrefs

Programs

  • Mathematica
    tp999Q[n_]:=Module[{c=FromDigits[Join[IntegerDigits[n],{9,9,9}]]}, And @@ PrimeQ[c+{0,2}]]; Select[Range[2500],tp999Q] (* Harvey P. Dale, Oct 03 2013 *)
    Select[3 Range[0,700]+2,AllTrue[1000#+{999,1001},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 05 2021 *)
  • PARI
    isok(m) = my(x=eval(Str(m, 999))); isprime(x) && isprime(x+2); \\ Michel Marcus, Mar 08 2023

A288021 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 4, and p1, p2 are in different decades.

Original entry on oeis.org

7, 19, 37, 67, 79, 97, 109, 127, 229, 277, 307, 349, 379, 397, 439, 457, 487, 499, 739, 757, 769, 859, 877, 907, 937, 967, 1009, 1087, 1279, 1297, 1429, 1447, 1489, 1549, 1567, 1579, 1597, 1609, 1867, 1999, 2137, 2239, 2269, 2347, 2377, 2389, 2437, 2539, 2617, 2659, 2689, 2707, 2749, 2797, 2857
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 7's or 9's.

Examples

			7 is in this sequence since pair (7,11) is the first with difference 4 spanning a multiple of 10.
		

Crossrefs

Programs

  • Mathematica
    a288021[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==4&]]
    a288021[3000] (* data *)

A288022 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 6, and p1, p2 are in different decades.

Original entry on oeis.org

47, 157, 167, 257, 367, 557, 587, 607, 647, 677, 727, 947, 977, 1097, 1117, 1187, 1217, 1367, 1657, 1747, 1777, 1907, 1987, 2207, 2287, 2417, 2467, 2677, 2837, 2897, 2957, 3307, 3407, 3607, 3617, 3637, 3727, 3797, 4007, 4357, 4457, 4507, 4597, 4657, 4937, 4987
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 7's.
Number of terms < 10^k: 0, 0, 1, 13, 81, 565, 4027, 30422, 237715, ... - Muniru A Asiru, Jan 09 2018

Examples

			47 is in the sequence since pair (47,53) is the first with difference 6 spanning a multiple of 10.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..20000], IsPrime);
    P1:=List(Filtered(Filtered(List([1..Length(P)-1],n->[P[n],P[n+1]]),i->i[2]-i[1]=6),j->j[1] mod 5=2),k->k[1]); # Muniru A Asiru, Jul 08 2017
  • Maple
    for n from 1 to 2000 do if [ithprime(n+1)-ithprime(n), ithprime(n) mod 5] = [6,2] then print(ithprime(n)); fi; od; # Muniru A Asiru, Jan 19 2018
  • Mathematica
    a288022[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==6&]]
    a288022[3000] (* data *)

A288024 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 8, and p1, p2 are in different decades.

Original entry on oeis.org

89, 359, 389, 449, 479, 683, 719, 743, 929, 983, 1109, 1163, 1193, 1373, 1439, 1523, 1559, 1733, 1823, 1979, 2003, 2153, 2213, 2243, 2273, 2459, 2609, 2663, 2699, 2843, 2879, 2909, 3209, 3449, 3623, 3719, 4289, 4349, 4583, 4943, 5189, 5399, 5573, 5693, 5783, 5813
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 3's or 9's.

Examples

			89 is in the sequence since pair (89,97) is the first with difference 8 spanning a multiple of 10.
		

Crossrefs

Programs

  • Mathematica
    a288024[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==8&]]
    a288024[6000] (* data *)
    Select[Partition[Prime[Range[800]],2,1],#[[2]]-#[[1]]==8&&IntegerDigits[#[[1]]][[-2]]!= IntegerDigits[ #[[2]]][[-2]]&][[;;,1]] (* Harvey P. Dale, Jan 09 2024 *)

A287050 Square array read by antidiagonals upwards: M(n,k) is the initial occurrence of first prime p1 of consecutive primes p1, p2, where p2 - p1 = 2*k, and p1, p2 span a multiple of 10^n, n>=1, k>=1.

Original entry on oeis.org

29, 599, 7, 2999, 97, 47, 179999, 1999, 1097, 89, 23999999, 69997, 21997, 1193, 139, 23999999, 199999, 369997, 23993, 691, 199, 29999999, 19999999, 3199997, 149993, 10993, 199, 113, 17399999999, 19999999, 6999997, 1199999, 139999, 997, 293, 1831
Offset: 1

Views

Author

Hartmut F. W. Hoft, May 18 2017

Keywords

Comments

The unit digits of the numbers in the matrix representation M(n,k) are 9's for column 1, 7's or 9's for column 2, 7's for column 3, 3's or 9's for column 4, and 1's, 3's, 7's or 9's for column 5.
The following matrix terms appear as first terms in sequence
A060229(1) = M(1,1)
A288021(1) = M(1,2)
A288022(1) = M(1,3)
A288024(1) = M(1,4)
A031928(1) = M(1,5)
A158277(1) = M(2,1)
A160440(1) = M(2,2)
A160370(1) = M(2,3)
A287049(1) = M(2,4)
A160500(1) = M(2,5)
A158861(1) = M(3,1).

Examples

			The matrix representation of the sequence with row n indicating the spanned power of 10 and column k indicating the difference of 2*k between the first pair of consecutive primes spanning a multiple of 10^n:
--------------------------------------------------------------------------
n\k   1             2             3             4            5
--------------------------------------------------------------------------
1 |   29            7             47            89           139
2 |   599           97            1097          1193         691
3 |   2999          1999          21997         23993        10993
4 |   179999        69997         369997        149993       139999
5 |   23999999      199999        3199997       1199999      1999993
6 |   23999999      19999999      6999997       38999993     1999993
7 |   29999999      19999999      159999997     659999999    379999999
8 |   17399999999   7699999999    9399999997    8999999993   499999993
9 |   92999999999   135999999997  85999999997   8999999993   28999999999
10|   569999999999  519999999997  369999999997  29999999993  819999999997
...
Every column in the matrix is nondecreasing.
For the first and fourth columns, ceiling(M[n,1]/10^n) and ceiling(M[n,4]/10^n) are divisible by 3, for all n>=1 (see A158277 and A287049).
		

Crossrefs

Formula

M(n,k) = min( p_i : p_(i+1) - p_i = 2*k, p_i and p_(i+1) consecutive primes and p_i < m*10^n < p_(i+1) for some integer m) where p_j is the j-th prime, n>=1 and k>=1.
Showing 1-7 of 7 results.