A161705 a(n) = 18*n + 1.
1, 19, 37, 55, 73, 91, 109, 127, 145, 163, 181, 199, 217, 235, 253, 271, 289, 307, 325, 343, 361, 379, 397, 415, 433, 451, 469, 487, 505, 523, 541, 559, 577, 595, 613, 631, 649, 667, 685, 703, 721, 739, 757, 775, 793, 811, 829, 847, 865, 883, 901, 919, 937, 955
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> 18*n+1); # G. C. Greubel, Sep 18 2019
-
Magma
[18*n +1: n in [0..60]]; // G. C. Greubel, Sep 18 2019
-
Maple
seq(18*n+1, n=0..60); # G. C. Greubel, Sep 18 2019
-
Mathematica
Range[1, 1000, 18] (* Vladimir Joseph Stephan Orlovsky, Jun 01 2011 *) LinearRecurrence[{2,-1},{1,19}, 60] (* G. C. Greubel, Feb 17 2017 *)
-
PARI
vector(60, n, 18*n-17) \\ G. C. Greubel, Feb 17 2017
-
Sage
[18*n+1 for n in (0..60)] # G. C. Greubel, Sep 18 2019
Formula
a(n) = 18*n + 1, n >= 0.
a(n) = a(n-1) + 18 (with a(0)=1). - Vincenzo Librandi, Dec 27 2010
From G. C. Greubel, Feb 17 2017: (Start)
G.f.: (1 + 17*x)/(1-x)^2.
E.g.f.: (1 + 18*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)
Comments