cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A016813 a(n) = 4*n + 1.

Original entry on oeis.org

1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 23 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 64 ).
Numbers k such that k and (k+1) have the same binary digital sum. - Benoit Cloitre, Jun 05 2002
Numbers k such that (1 + sqrt(k))/2 is an algebraic integer. - Alonso del Arte, Jun 04 2012
Numbers k such that 2 is the only prime p that satisfies the relationship p XOR k = p + k. - Brad Clardy, Jul 22 2012
This may also be interpreted as the array T(n,k) = A001844(n+k) + A008586(k) read by antidiagonals:
1, 9, 21, 37, 57, 81, ...
5, 17, 33, 53, 77, 105, ...
13, 29, 49, 73, 101, 133, ...
25, 45, 69, 97, 129, 165, ...
41, 65, 93, 125, 161, 201, ...
61, 89, 121, 157, 197, 241, ...
...
- R. J. Mathar, Jul 10 2013
With leading term 2 instead of 1, 1/a(n) is the largest tolerance of form 1/k, where k is a positive integer, so that the nearest integer to (n - 1/k)^2 and to (n + 1/k)^2 is n^2. In other words, if interval arithmetic is used to square [n - 1/k, n + 1/k], every value in the resulting interval of length 4n/k rounds to n^2 if and only if k >= a(n). - Rick L. Shepherd, Jan 20 2014
Odd numbers for which the number of prime factors congruent to 3 (mod 4) is even. - Daniel Forgues, Sep 20 2014
For the Collatz conjecture, we identify two types of odd numbers. This sequence contains all the descenders: where (3*a(n) + 1) / 2 is even and requires additional divisions by 2. See A004767 for the ascenders. - Fred Daniel Kline, Nov 29 2014 [corrected by Jaroslav Krizek, Jul 29 2016]
a(n-1), n >= 1, is also the complex dimension of the manifold M(S), the set of all conjugacy classes of irreducible representations of the fundamental group pi_1(X,x_0) of rank 2, where S = {a_1, ..., a_{n}, a_{n+1} = oo}, a subset of P^1 = C U {oo}, X = X(S) = P^1 \ S, and x_0 a base point in X. See the Iwasaki et al. reference, Proposition 2.1.4. p. 150. - Wolfdieter Lang, Apr 22 2016
For n > 3, also the number of (not necessarily maximal) cliques in the n-sunlet graph. - Eric W. Weisstein, Nov 29 2017
For integers k with absolute value in A047202, also exponents of the powers of k having the same unit digit of k in base 10. - Stefano Spezia, Feb 23 2021
Starting with a(1) = 5, numbers ending with 01 in base 2. - John Keith, May 09 2022

Examples

			From _Leo Tavares_, Jul 02 2021: (Start)
Illustration of initial terms:
                                        o
                        o               o
            o           o               o
    o     o o o     o o o o o     o o o o o o o
            o           o               o
                        o               o
                                        o
(End)
		

References

  • K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 150.

Crossrefs

Subsequence of A042963 and of A079523.
a(n) = A093561(n+1, 1), (4, 1)-Pascal column.
Cf. A004772 (complement).
Cf. A017557.

Programs

Formula

a(n) = A005408(2*n).
Sum_{n>=0} (-1)^n/a(n) = (1/(4*sqrt(2)))*(Pi+2*log(sqrt(2)+1)) = A181048 [Jolley]. - Benoit Cloitre, Apr 05 2002 [corrected by Amiram Eldar, Jul 30 2023]
G.f.: (1+3*x)/(1-x)^2. - Paul Barry, Feb 27 2003 [corrected for offset 0 by Wolfdieter Lang, Oct 03 2014]
(1 + 5*x + 9*x^2 + 13*x^3 + ...) = (1 + 2*x + 3*x^2 + ...) / (1 - 3*x + 9*x^2 - 27*x^3 + ...). - Gary W. Adamson, Jul 03 2003
a(n) = A001969(n) + A000069(n). - Philippe Deléham, Feb 04 2004
a(n) = A004766(n-1). - R. J. Mathar, Oct 26 2008
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=5. a(n) = 4 + a(n-1). - Philippe Deléham, Nov 03 2008
A056753(a(n)) = 3. - Reinhard Zumkeller, Aug 23 2009
A179821(a(n)) = a(A179821(n)). - Reinhard Zumkeller, Jul 31 2010
a(n) = 8*n - 2 - a(n-1) for n > 0, a(0) = 1. - Vincenzo Librandi, Nov 20 2010
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as a(n)^2 - A002943(n)*2^2 = 1. - Vincenzo Librandi, Mar 11 2009 - Nov 25 2012
A089911(6*a(n)) = 8. - Reinhard Zumkeller, Jul 05 2013
a(n) = A004767(n) - 2. - Jean-Bernard François, Sep 27 2013
a(n) = A058281(3n+1). - Eli Jaffe, Jun 07 2016
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (1 + 4*x)*exp(x).
a(n) = Sum_{k = 0..n} A123932(k).
a(A005098(k)) = x^2 + y^2.
Inverse binomial transform of A014480. (End)
Dirichlet g.f.: 4*Zeta(-1 + s) + Zeta(s). - Stefano Spezia, Nov 02 2018

A016921 a(n) = 6*n + 1.

Original entry on oeis.org

1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325, 331
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 22 ).
Also solutions to 2^x + 3^x == 5 (mod 7). - Cino Hilliard, May 10 2003
Except for 1, exponents n > 1 such that x^n - x^2 - 1 is reducible. - N. J. A. Sloane, Jul 19 2005
Let M(n) be the n X n matrix m(i,j) = min(i,j); then the trace of M(n)^(-2) is a(n-1) = 6*n - 5. - Benoit Cloitre, Feb 09 2006
If Y is a 3-subset of an (2n+1)-set X then, for n >= 3, a(n-1) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
All composite terms belong to A269345 as shown in there. - Waldemar Puszkarz, Apr 13 2016
First differences of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
For b(n) = A103221(n) one has b(a(n)-1) = b(a(n)+1) = b(a(n)+2) = b(a(n)+3) = b(a(n)+4) = n+1 but b(a(n)) = n. So-called "dips" in A103221. See the Avner and Gross remark on p. 178. - Wolfdieter Lang, Sep 16 2016
A (n+1,n) pebbling move involves removing n + 1 pebbles from a vertex in a simple graph and placing n pebbles on an adjacent vertex. A two-player impartial (n+1,n) pebbling game involves two players alternating (n+1,n) pebbling moves. The first player unable to make a move loses. The sequence a(n) is also the minimum number of pebbles such that any assignment of those pebbles on a complete graph with 3 vertices is a next-player winning game in the two player impartial (k+1,k) pebbling game. These games are represented by A347637(3,n). - Joe Miller, Oct 18 2021
Interleaving of A017533 and A017605. - Leo Tavares, Nov 16 2021

Examples

			From _Ilya Gutkovskiy_, Apr 15 2016: (Start)
Illustration of initial terms:
                      o
                    o o o
              o     o o o
            o o o   o o o
      o     o o o   o o o
    o o o   o o o   o o o
o   o o o   o o o   o o o
n=0  n=1     n=2     n=3
(End)
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.

Crossrefs

Cf. A093563 ((6, 1) Pascal, column m=1).
a(n) = A007310(2*(n+1)); complement of A016969 with respect to A007310.
Cf. A287326 (second column).

Programs

Formula

a(n) = 6*n + 1, n >= 0 (see the name).
G.f.: (1+5*x)/(1-x)^2.
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A013730(n). - Reinhard Zumkeller, Feb 24 2009
a(n) = 4*(3*n-1) - a(n-1) (with a(0)=1). - Vincenzo Librandi, Nov 20 2010
E.g.f.: (1 + 6*x)*exp(x). - G. C. Greubel, Sep 18 2019
a(n) = A003215(n) - 6*A000217(n-1). See Hexagonal Lines illustration. - Leo Tavares, Sep 10 2021
From Leo Tavares, Oct 27 2021: (Start)
a(n) = 6*A001477(n-1) + 7
a(n) = A016813(n) + 2*A001477(n)
a(n) = A017605(n-1) + A008588(n-1)
a(n) = A016933(n) - 1
a(n) = A008588(n) + 1. (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/6 + sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021

A000125 Cake numbers: maximal number of pieces resulting from n planar cuts through a cube (or cake): C(n+1,3) + n + 1.

Original entry on oeis.org

1, 2, 4, 8, 15, 26, 42, 64, 93, 130, 176, 232, 299, 378, 470, 576, 697, 834, 988, 1160, 1351, 1562, 1794, 2048, 2325, 2626, 2952, 3304, 3683, 4090, 4526, 4992, 5489, 6018, 6580, 7176, 7807, 8474, 9178, 9920, 10701, 11522, 12384, 13288, 14235, 15226
Offset: 0

Views

Author

Keywords

Comments

Note that a(n) = a(n-1) + A000124(n-1). This has the following geometrical interpretation: Define a number of planes in space to be in general arrangement when
(1) no two planes are parallel,
(2) there are no two parallel intersection lines,
(3) there is no point common to four or more planes.
Suppose there are already n-1 planes in general arrangement, thus defining the maximal number of regions in space obtainable by n-1 planes and now one more plane is added in general arrangement. Then it will cut each of the n-1 planes and acquire intersection lines which are in general arrangement. (See the comments on A000124 for general arrangement with lines.) These lines on the new plane define the maximal number of regions in 2-space definable by n-1 straight lines, hence this is A000124(n-1). Each of this regions acts as a dividing wall, thereby creating as many new regions in addition to the a(n-1) regions already there, hence a(n) = a(n-1) + A000124(n-1). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
More generally, we have: A000027(n) = binomial(n,0) + binomial(n,1) (the natural numbers), A000124(n) = binomial(n,0) + binomial(n,1) + binomial(n,2) (the Lazy Caterer's sequence), a(n) = binomial(n,0) + binomial(n,1) + binomial(n,2) + binomial(n,3) (Cake Numbers). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
If Y is a 2-subset of an n-set X then, for n>=3, a(n-3) is the number of 3-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) is the number of compositions (ordered partitions) of n+1 into four or fewer parts or equivalently the sum of the first four terms in the n-th row of Pascal's triangle. - Geoffrey Critzer, Jan 23 2009
{a(k): 0 <= k < 4} = divisors of 8. - Reinhard Zumkeller, Jun 17 2009
a(n) is also the maximum number of different values obtained by summing n consecutive positive integers with all possible 2^n sign combinations. This maximum is first reached when summing the interval [n, 2n-1]. - Olivier Gérard, Mar 22 2010
a(n) contains only 5 perfect squares > 1: 4, 64, 576, 67600, and 75203584. The incidences of > 0 are given by A047694. - Frank M Jackson, Mar 15 2013
Given n tiles with two values - an A value and a B value - a player may pick either the A value or the B value. The particular tiles are [n, 0], [n-1, 1], ..., [2, n-2] and [1, n-1]. The sequence is the number of different final A:B counts. For example, with n=4, we can have final total [5, 3] = [4, ] + [, 1] + [, 2] + [1, ] = [, 0] + [3, ] + [2, ] + [, 3], so a(4) = 2^4 - 1 = 15. The largest and smallest final A+B counts are given by A077043 and A002620 respectively. - Jon Perry, Oct 24 2014
For n>=3, a(n) is also the number of maximal cliques in the (n+1)-triangular graph (the 4-triangular graph has a(3)=8 maximal cliques). - Andrew Howroyd, Jul 19 2017
a(n) is the number of binary words of length n matching the regular expression 1*0*1*0*. Coincidentally, A000124 counts binary words of the form 0*1*0*. See Alexandersson and Nabawanda for proof. - Per W. Alexandersson, May 15 2021
For n > 0, let the n-dimensional cube, {0,1}^n be provided with the Hamming distance, d. Given an element x in {0,1}^n, a(n) is the number of elements y in {0,1}^n such that d(x, y) <= 3. Example: n = 4. Let x = (0,0,0,0) be in {0,1}^4.
d(x,y) = 0: y in {(0,0,0,0)}.
d(x,y) = 1: y in {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}.
d(x,y) = 2: y in {(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), (0,0,1,1)}.
d(x,y) = 3: y in {(1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1)}.
All these y are at a distance <= 3 from (0,0,0,0), so a(4) = 15. (See Peter C. Heinig's formula). - Yosu Yurramendi, Dec 14 2021
For n >= 2, a(n) is the number of distinct least squares regression lines fitted to n points (j,y_j), 1 <= j <= n, where each y_j is 0 or 1. The number of distinct lines with exactly k 1's among y_1, ..., y_n is A077028(n,k). The number of distinct slopes is A123596(n). - Pontus von Brömssen, Mar 16 2024
The only powers of 2 in this sequence are a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, and a(7) = 64. - Jianing Song, Jan 02 2025

Examples

			a(4)=15 because there are 15 compositions of 5 into four or fewer parts. a(6)=42 because the sum of the first four terms in the 6th row of Pascal's triangle is 1+6+15+20=42. - _Geoffrey Critzer_, Jan 23 2009
For n=5, (1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 35) and their opposite are the 26 different sums obtained by summing 5,6,7,8,9 with any sign combination. - _Olivier Gérard_, Mar 22 2010
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 42*x^6 + 64*x^7 + ... - _Michael Somos_, Jul 07 2022
		

References

  • V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_3.
  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 27.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 80.
  • H. E. Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. H. Stickels, Mindstretching Puzzles. Sterling, NY, 1994 p. 85.
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #45 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Programs

Formula

a(n) = (n+1)*(n^2-n+6)/6 = (n^3 + 5*n + 6) / 6.
G.f.: (1 - 2*x + 2x^2)/(1-x)^4. - [Simon Plouffe in his 1992 dissertation.]
E.g.f.: (1 + x + x^2/2 + x^3/6)*exp(x).
a(n) = binomial(n,3) + binomial(n,2) + binomial(n,1) + binomial(n,0). - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006
Paraphrasing the previous comment: the sequence is the binomial transform of [1,1,1,1,0,0,0,...]. - Gary W. Adamson, Oct 23 2007
From Ilya Gutkovskiy, Jul 18 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = Sum_{k=0..n} A152947(k+1).
Inverse binomial transform of A134396.
Sum_{n>=0} a(n)/n! = 8*exp(1)/3. (End)
a(n) = -A283551(-n). - Michael Somos, Jul 07 2022
a(n) = A046127(n+1)/2 = A033547(n)/2 + 1. - Jianing Song, Jan 02 2025

Extensions

Minor typo in comments corrected by Mauro Fiorentini, Jan 02 2018

A017281 a(n) = 10*n + 1.

Original entry on oeis.org

1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231, 241, 251, 261, 271, 281, 291, 301, 311, 321, 331, 341, 351, 361, 371, 381, 391, 401, 411, 421, 431, 441, 451, 461, 471, 481, 491, 501, 511, 521, 531
Offset: 0

Views

Author

Keywords

Comments

Equals [1, 2, 3, ...] convolved with [1, 9, 0, 0, 0, ...]. - Gary W. Adamson, May 30 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=10, (i>1), A[i,i-1] = -1, and A[i,j]=0 otherwise. Then, for n>=2, a(n-1) = -coeff(charpoly(A,x),x^(n-1)). - Milan Janjic, Feb 21 2010
Positive integers with last decimal digit = 1. - Wesley Ivan Hurt, Jun 17 2015
Also the number of (not necessarily maximal) cliques in the 2n-crossed prism graph. - Eric W. Weisstein, Nov 29 2017
From Martin Renner, May 28 2024: (Start)
Also number of squares in a grid cross with equally long arms and a width of two points (cf. A017113), e.g. for n = 2 there are nine squares of size 1 unit of area, four of size 2, two of size 5, four of size 8 and two of size 13, thus a total of 21 squares.
· · · · · · · · * ·
· · · · * · * · · ·
* * · · · · · · * · · · · · · · * · · · · · · · · · · · · *
* * · · · · · * · * · · · * · · · · * · · · * · * · · · · ·
· · * · · * · · · ·
· · · · · · * · · *
The possible areas of the squares are given by ceiling(k^2/2) for 1 <= k <= 2*n+1, cf. A000982. In general, there are 4*n + 1 squares with one unit area to be found in the cross, cf. A016813, for n > 0 always four squares of even area and two squares of odd area > 1. (End)

Crossrefs

Cf. A093645 (column 1).
Subsequence of A034709, together with A017293, A017329, A139222, A139245, A139249, A139264, A139279 and A139280.
Cf. A030430 (primes).
Cf. A272914, first comment. [Bruno Berselli, May 26 2016]

Programs

Formula

G.f.: (1+9*x)/(1-x)^2.
a(n) = 20*n - a(n-1) - 8, with a(0)=1. - Vincenzo Librandi, Nov 20 2010
a(n) = 2*a(n-1) - a(n-2), for n > 2. - Wesley Ivan Hurt, Jun 17 2015
E.g.f.: (1 + 10*x)*exp(x). - G. C. Greubel, Sep 18 2019

A017533 a(n) = 12*n + 1.

Original entry on oeis.org

1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 133, 145, 157, 169, 181, 193, 205, 217, 229, 241, 253, 265, 277, 289, 301, 313, 325, 337, 349, 361, 373, 385, 397, 409, 421, 433, 445, 457, 469, 481, 493, 505, 517, 529, 541, 553, 565, 577, 589, 601, 613, 625, 637
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 12*n + 1, n >= 0.
a(n) = 24*n - 10 - a(n-1), (with a(0)=1). - Vincenzo Librandi, Dec 24 2010
G.f.: (1 + 11*x)/(1-x)^2. - Indranil Ghosh, Apr 05 2017
E.g.f.: (1 + 12*x)*exp(x). - G. C. Greubel, Sep 18 2019

A161700 a(n) is the sum of the elements on the antidiagonal of the difference table of the divisors of n.

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 13, 15, 19, 17, 21, 28, 25, 21, 41, 31, 33, 59, 37, 21, 53, 29, 45, 39, 61, 33, 65, 49, 57, 171, 61, 63, 77, 41, 117, 61, 73, 45, 89, -57, 81, 309, 85, 105, 167, 53, 93, -80, 127, 61, 113, 133, 105, 321, 173, 183, 125, 65, 117, -1039, 121, 69, 155, 127, 201, 333, 133, 189, 149, -69, 141, 117, 145, 81, 317, 217, 269
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 17 2009, Jun 20 2009

Keywords

Comments

a(p^k) = p^(k+1) - (p-1)^(k+1) if p is prime. - Robert Israel, May 18 2016

Examples

			n=12: A000005(12)=6;
EDP(12,x) = (x^5 - 5*x^4 + 5*x^3 + 5*x^2 + 114*x + 120)/120 = A161701(x) is the interpolating polynomial for {(0,1),(1,2),(2,3),(3,4),(4,6),(5,12)},
{EDP(12,x): 0<=x<6} = {1, 2, 3, 4, 6, 12} = divisors of 12,
a(12) = EDP(12,6) = 28.
From _Peter Luschny_, May 18 2016: (Start)
a(40) = -57 because the sum of the elements on the antidiagonal of DTD(40) is -57.
The DTD(40) is:
[   1    2    4   5  8  10  20  40]
[   1    2    1   3  2  10  20   0]
[   1   -1    2  -1  8  10   0   0]
[  -2    3   -3   9  2   0   0   0]
[   5   -6   12  -7  0   0   0   0]
[ -11   18  -19   0  0   0   0   0]
[  29  -37    0   0  0   0   0   0]
[ -66    0    0   0  0   0   0   0]
(End)
		

Crossrefs

Programs

  • Maple
    f:= proc(n)
    local D, nD;
    D:= sort(convert(numtheory:-divisors(n),list));
    nD:= nops(D);
    CurveFitting:-PolynomialInterpolation([$0..nD-1],D, nD)
    end proc:
    map(f, [$1..100]); # Robert Israel, May 18 2016
  • Mathematica
    a[n_] := (d = Divisors[n]; t = Table[Differences[d, k], {k, 0, lg = Length[d]}]; Sum[t[[lg - k + 1, k]], {k, 1, lg}]);
    Array[a, 77] (* Jean-François Alcover, Jan 25 2018 *)
  • Sage
    def A161700(n):
        D = divisors(n)
        T = matrix(ZZ, len(D))
        for (m, d) in enumerate(D):
            T[0, m] = d
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return sum(T[k,len(D)-k-1] for k in range(len(D)))
    print([A161700(n) for n in range(1,78)]) # Peter Luschny, May 18 2016

Formula

a(n) = EDP(n,tau(n)) with tau = A000005 and EDP(n,x) = interpolating polynomial for the divisors of n.
EDP(n,A000005(n) - 1) = n;
EDP(n,1) = A020639(n);
EDP(n,0) = 1;
EDP(n,k) = A027750(A006218(n-1)+k+1), 0<=k < A000005(n).

Extensions

New name from Peter Luschny, May 18 2016

A128470 a(n) = 30*n + 1.

Original entry on oeis.org

1, 31, 61, 91, 121, 151, 181, 211, 241, 271, 301, 331, 361, 391, 421, 451, 481, 511, 541, 571, 601, 631, 661, 691, 721, 751, 781, 811, 841, 871, 901, 931, 961, 991, 1021, 1051, 1081, 1111, 1141, 1171, 1201, 1231, 1261, 1291, 1321, 1351, 1381, 1411, 1441, 1471
Offset: 0

Views

Author

Cino Hilliard, May 06 2007

Keywords

Comments

Possible upper bounds of twin primes pairs ending in 1: For a 30k + r "wheel", k > 0, r = 1, 13, 19 are the only possible values that can form an upper bound of a twin prime pair. The 30k+r wheel gives the sequence 1, 7, 11, 13, 17, 19, 23, 29 31, 37, 41, 43, 47, 49, 53, 59, ... which is frequently used in prime number sieves to skip multiples of 2, 3, 5. The fact that subtracting 2 from 30k+7, 11, 17, 23 will give us a multiple of 3 or 5 precludes these numbers from being an upper bound of a twin prime pair. This leaves us with r = 1, 13, 19 for k > 0 as the only possible cases to form an upper bound of a twin prime pair. 1, 13, 19 concludes the 6 numbers of the 8 number wheel that can form part of a twin prime pair.

Examples

			61 = 30 * 2 + 1, the upper part of the twin prime pair 59, 61.
		

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) for n > 1. - Vincenzo Librandi, Dec 30 2014
G.f.: (1 + 29*x)/(1 - x)^2. - Vincenzo Librandi, Dec 30 2014
E.g.f.: (1 + 30*x)*exp(x). - G. C. Greubel, Apr 04 2016

A287326 Triangle read by rows: T(n, k) = 6*k*(n-k) + 1; n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 25, 19, 1, 1, 25, 37, 37, 25, 1, 1, 31, 49, 55, 49, 31, 1, 1, 37, 61, 73, 73, 61, 37, 1, 1, 43, 73, 91, 97, 91, 73, 43, 1, 1, 49, 85, 109, 121, 121, 109, 85, 49, 1, 1, 55, 97, 127, 145, 151, 145, 127, 97, 55, 1, 1, 61, 109, 145, 169, 181, 181, 169, 145, 109, 61, 1
Offset: 0

Views

Author

Kolosov Petro, Aug 31 2017

Keywords

Comments

From Kolosov Petro, Apr 12 2020: (Start)
Let A(m, r) = A302971(m, r) / A304042(m, r).
Let L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r.
Then T(n, k) = L(1, n, k), i.e T(n, k) is partial case of L(m, n, k) for m = 1.
T(n, k) is symmetric: T(n, k) = T(n, n-k). (End)

Examples

			Triangle begins:
  ----------------------------------------
  k=    0   1   2   3   4   5   6   7   8
  ----------------------------------------
  n=0:  1;
  n=1:  1,  1;
  n=2:  1,  7,  1;
  n=3:  1, 13, 13,  1;
  n=4:  1, 19, 25, 19,  1;
  n=5:  1, 25, 37, 37, 25,  1;
  n=6:  1, 31, 49, 55, 49, 31,  1;
  n=7:  1, 37, 61, 73, 73, 61, 37,  1;
  n=8:  1, 43, 73, 91, 97, 91, 73, 43,  1;
		

Crossrefs

Columns k=0..6 give A000012, A016921, A017533, A161705, A103214, A128470, A158065.
Column sums k=0..4 give A000027, A000567, A051866, A051872, A255185.
Row sums give A001093.
Various cases of L(m, n, k): This sequence (m=1), A300656(m=2), A300785(m=3). See comments for L(m, n, k).
Differences of cubes n^3 are T(A000124(n), 1).

Programs

  • GAP
    Flat(List([0..11],n->List([0..n],k->6*k*(n-k)+1))); # Muniru A Asiru, Oct 09 2018
    
  • Magma
    /* As triangle */ [[6*k*(n-k) + 1: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 26 2018
    
  • Maple
    T := (n, k) -> 6*k*(n-k) + 1:
    seq(seq(T(n, k), k=0..n), n=0..11); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    T[n_, k_] := 6 k (n - k) + 1; Column[Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jun 02 2019 *)
  • PARI
    t(n, k) = 6*k*(n-k)+1
    trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
    /* Print initial 9 rows of triangle as follows */
    trianglerows(9) \\ Felix Fröhlich, Jan 09 2018
    
  • SageMath
    def A287326(n,k): return 6*k*(n-k) + 1
    flatten([[A287326(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 25 2024

Formula

T(n, k) = 6*k*(n-k) + 1.
G.f. of column k: n^k*(1+(6*k-1)*n)/(1-n)^2.
G.f.: (1 - x - x*y + 7*x^2*y)/((1 - x)^2*(1 - x*y)^2). - Stefano Spezia, Oct 09 2018 [Adapted by Stefano Spezia, Sep 25 2024]
From Kolosov Petro, Jun 05 2019: (Start)
T(n, k) = 1/2 * T(A294317(n, k), k) + 1/2.
T(n+1, k) = 2*T(n, k) - T(n-1, k), for n >= k.
T(n, k) = 6*A077028(n, k) - 5.
T(2n, n) = A227776(n).
T(2n+1, n) = A003154(n+1).
T(2n+3, n) = A166873(n+1).
Sum_{k=0..n-1} T(n, k) = Sum_{k=1..n} T(n, k) = A000578(n).
Sum_{k=1..n-1} T(n, k) = A068601(n).
(n+1)^3 - n^3 = T(A000124(n), 1). (End)
Sum_{k=0..n} (-1)^k*T(n, k) = (-1/2)*(1 + (-1)^n)*A016969(floor(n/2) - 1). - G. C. Greubel, Sep 25 2024

A161709 a(n) = 22*n + 1.

Original entry on oeis.org

1, 23, 45, 67, 89, 111, 133, 155, 177, 199, 221, 243, 265, 287, 309, 331, 353, 375, 397, 419, 441, 463, 485, 507, 529, 551, 573, 595, 617, 639, 661, 683, 705, 727, 749, 771, 793, 815, 837, 859, 881, 903, 925, 947, 969, 991, 1013, 1035, 1057, 1079, 1101, 1123
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

References

  • Italo Ghersi, Matematica dilettevole e curiosa, p. 139, Hoepli, Milano, 1967. [From Vincenzo Librandi, Dec 02 2009]

Crossrefs

Programs

Formula

From G. C. Greubel, Sep 18 2019: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1 + 21*x)/(1-x)^2.
E.g.f.: (1 + 22*x)*exp(x). (End)

A161714 a(n) = 28*n + 1.

Original entry on oeis.org

1, 29, 57, 85, 113, 141, 169, 197, 225, 253, 281, 309, 337, 365, 393, 421, 449, 477, 505, 533, 561, 589, 617, 645, 673, 701, 729, 757, 785, 813, 841, 869, 897, 925, 953, 981, 1009, 1037, 1065, 1093, 1121, 1149, 1177, 1205, 1233, 1261, 1289, 1317, 1345, 1373
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Crossrefs

Programs

Formula

G.f.: (1 + 27*x)/(1-x)^2. - Indranil Ghosh, Apr 05 2017
E.g.f.: (1 + 28*x)*exp(x). - G. C. Greubel, Sep 18 2019
Showing 1-10 of 19 results. Next