cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A262441 a(n) = Sum_{k=0..n+1}(binomial(n-1,k)/(k+1)*binomial(n+k+1,n-k)).

Original entry on oeis.org

1, 2, 5, 16, 58, 226, 924, 3910, 16979, 75232, 338776, 1545886, 7132580, 33219086, 155963851, 737383488, 3507680650, 16776206680, 80622416976, 389123999656, 1885405316596, 9167409871040, 44717351734160, 218762640192838, 1073082055680180
Offset: 0

Views

Author

Vladimir Kruchinin, Sep 23 2015

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-1, k)/(k+1)*Binomial(n+k+1, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 23 2015
    
  • Mathematica
    Join[{1}, Table[Sum[ Binomial[n-1, k] / (k+1) Binomial[ n+k+1, n-k], {k, 0, n+1}], {n, 25}]] (* Vincenzo Librandi, Sep 23 2015 *)
  • Maxima
    a(n):=sum(binomial(n,k)*binomial(n+k-2,n-k-1),k,0,n-1)/n;
    A(x):=sum(a(n)*x^n,n,1,30);
    taylor((1/x-1/A(x)),x,0,10);
    
  • PARI
    a(n)=sum(k=0,n+1,(binomial(n-1,k)/(k+1)*binomial(n+k+1,n-k))) \\ Anders Hellström, Sep 23 2015

Formula

G.f.: 1/x-1/A(x), where A(x) is g.f. of A109081.
Recurrence: 2*(n+1)*(2*n - 1)*(19*n - 30)*a(n) = 20*(19*n^3 - 49*n^2 + 34*n - 6)*a(n-1) + 2*(n-2)*(38*n^2 - 79*n + 15)*a(n-2) + 3*(n-3)*(n-2)*(19*n - 11)*a(n-3). - Vaclav Kotesovec, Sep 23 2015
a(n) = (n + 1)*hypergeom([1 - n, -n, n + 2], [3/2, 2], 1/4). - Peter Luschny, Mar 07 2022

A161799 G.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^2)^3.

Original entry on oeis.org

1, 3, 12, 61, 345, 2085, 13182, 86106, 576543, 3936029, 27294390, 191722887, 1361291244, 9754412169, 70447946556, 512278417176, 3747570671685, 27561220671408, 203657352324178, 1511270129552163, 11257532921742528
Offset: 0

Views

Author

Paul D. Hanna, Jun 19 2009

Keywords

Crossrefs

Programs

  • Maple
    A161799 := proc(n)
        local s,t ;
        s := 2 ;
        t := 3;
        add( binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k) /(n-k+1) ,k=0..n) ;
    end proc:
    seq(A161799(n),n=0..40) ; # R. J. Mathar, May 12 2022
  • Mathematica
    Table[Sum[Binomial[3*n-2*k+2,k]/(n-k+1)*Binomial[n+k-1,n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 18 2013 *)
  • PARI
    {a(n,m=1)=sum(k=0,n,binomial(3*n-2*k+3*m-1,k)*m/(n-k+m)*binomial(n+k-1,n-k))}

Formula

a(n) = Sum_{k=0..n} C(3*n-2*k+2,k)/(n-k+1) * C(n+k-1,n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n then
a(n,m) = Sum_{k=0..n} C(3*n-2*k+3*m-1,k)*m/(n-k+m) * C(n+k-1,n-k).
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 8.01957328653868383... is the root of the equation 3125 + 22356*d - 162432*d^2 - 361584*d^3 - 326592*d^4 + 46656*d^5 = 0 and c = 1.56703431595354192843152170651865561188... - Vaclav Kotesovec, Sep 18 2013

A349022 G.f. satisfies A(x) = 1/(1 - x/(1 - x*A(x))^3)^4.

Original entry on oeis.org

1, 4, 22, 152, 1161, 9460, 80550, 708172, 6379368, 58576168, 546215580, 5158542152, 49239812893, 474285453628, 4604149947276, 44999181550032, 442430807369519, 4372944634271688, 43425156714959956, 433049078716727332, 4334925824762251939
Offset: 0

Views

Author

Seiichi Manyama, Nov 06 2021

Keywords

Crossrefs

Programs

  • Maple
    A349022 := proc(n)
        add(binomial(4*n-3*(k-1),k)*binomial(n+2*k-1,n-k)/(n-k+1),k=0..n) ;
    end proc:
    seq(A349022(n),n=0..40) ; # R. J. Mathar, Jan 25 2023
  • PARI
    a(n, s=3, t=4) = sum(k=0, n, binomial(t*n-(t-1)*(k-1), k)*binomial(n+(s-1)*k-1, n-k)/(n-k+1));

Formula

If g.f. satisfies: A(x) = 1/(1 - x/(1 - x*A(x))^s)^t, then a(n) = Sum_{k=0..n} binomial(t*n-(t-1)*(k-1),k) * binomial(n+(s-1)*k-1,n-k)/(n-k+1).

A350290 a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n, k) * binomial(n + k - 1, n - k).

Original entry on oeis.org

1, 1, -3, -2, 21, -4, -150, 155, 1029, -2072, -6468, 22056, 34122, -208857, -106249, 1816958, -639067, -14629264, 17635800, 108117620, -239571684, -711876496, 2628772968, 3825823888, -25582846134, -10997156129, 227594431035, -98360217830, -1864646227185
Offset: 0

Views

Author

Peter Luschny, Mar 07 2022

Keywords

Crossrefs

Programs

  • Maple
    a := n -> add((-1)^(n - k)*binomial(n, k)*binomial(n + k - 1, n-k), k = 0..n):
    seq(a(n), n = 0..28);
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*binomial(n+k-1, n-k)); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = (-1)^(n-1)*n^2*hypergeom([1 - n, 1 - n, n + 1], [3/2, 2], -1/4) for n >= 1.
D-finite with recurrence 4*n*(2*n-1)*(9789*n-26254)*a(n) +2*(28924*n^3-27550*n^2-236727*n+284748)*a(n-1) +2*(342172*n^3-1352012*n^2+1027500*n+356439)*a(n-2) -2*(n-3)*(43143*n^2-783097*n+1918735)*a(n-3) -5*(5116*n-30173)*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jul 27 2022
Showing 1-4 of 4 results.