A163198
Sum of the cubes of the first n even-indexed Fibonacci numbers.
Original entry on oeis.org
0, 1, 28, 540, 9801, 176176, 3162160, 56744793, 1018249596, 18271762300, 327873509425, 5883451505856, 105574253853888, 1894453118539345, 33994581881622076, 610008020755286076, 10946149791725643705, 196420688230338021808, 3524626238354441796016, 63246851602149831726825
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equations (3), (46), (47), and (49).
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
- K. Subba Rao, Some properties of Fibonacci numbers, Amer. Math. Monthly, 60(10):680-684, Dec. 1953. See page 682.
- Index entries for linear recurrences with constant coefficients, signature (22,-77,77,-22,1).
-
a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k]^3, {k, 1, n} ], -Sum[ Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
LinearRecurrence[{22, -77, 77, -22, 1}, {0, 1, 28, 540, 9801}, 50] (* G. C. Greubel, Dec 09 2016 *)
Accumulate[Fibonacci[Range[0,40,2]]^3] (* Harvey P. Dale, Nov 15 2023 *)
-
a(n) = sum(k=1, n, fibonacci(2*k)^3); \\ Michel Marcus, Feb 29 2016
-
concat([0], Vec(x*(1 + 6*x + x^2)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 09 2016
Melham and Ozeki references from
Wolfdieter Lang, Aug 10 2012. Also Prodinger reference added, Oct 11 2012.
A163200
Sum of the cubes of the first n odd-indexed Fibonacci numbers.
Original entry on oeis.org
0, 1, 9, 134, 2331, 41635, 746604, 13395941, 240376941, 4313380114, 77400441855, 1388894512391, 24922700621784, 447219716262409, 8025032191009041, 144003359719040030, 2584035442744223139, 46368634609657371691, 832051387531037141316, 14930556340948876798829
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- K. Subba Rao, Some properties of Fibonacci numbers, Amer. Math. Monthly, 60(10):680-684, Dec. 1953. See page 682.
- Index entries for linear recurrences with constant coefficients, signature (21,-56,21,-1).
-
[(1/4)*Fibonacci(2*n)*(Fibonacci(2*n)^2+3): n in [0..20]]; // Vincenzo Librandi, Dec 10 2016
-
a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k-1]^3, {k, 1, n} ], -Sum[ Fibonacci[-2k+1]^3, {k, 1, -n} ] ]
LinearRecurrence[{21,-56,21,-1}, {0,1,9,134}, 50] (* or *) Table[(1/20)*(Fibonacci[6*n] + 12*Fibonacci[2*n]),{n,0,25}] (* G. C. Greubel, Dec 09 2016 *)
Join[{0},Accumulate[Fibonacci[Range[1,41,2]]^3]] (* Harvey P. Dale, Jul 20 2021 *)
-
concat([0],Vec(x*(1 - 12*x + x^2)/((1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 09 2016
A163202
Alternating sum of the cubes of the first n odd-indexed Fibonacci numbers.
Original entry on oeis.org
0, -1, 7, -118, 2079, -37225, 667744, -11981593, 214999407, -3858003766, 69229057975, -1242265012561, 22291541096832, -400005474543793, 7177807000202839, -128800520527828150, 2311231562497354959, -41473367604415793593, 744209385316963976032, -13354295568100875681481
Offset: 0
-x + 7*x^2 - 118*x^3 + 2079*x^4 - 37225*x^5 + 667744*x^6 - 11981593*x^7 + ... - _Michael Somos_, Aug 11 2009
-
[((-1)^n*(Fibonacci(6*n)/2+Fibonacci(6*n-1)+ 3*Fibonacci(2*n-1)+3*Fibonacci(2*n+1))-7)/25: n in [0..20]]; // Vincenzo Librandi, Dec 19 2016
-
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k-1]^3, {k, 1, n} ], Sum[ (-1)^k Fibonacci[-2k+1]^3, {k, 1, -n} ] ]
Join[{0},Accumulate[Times@@@Partition[Riffle[Take[Fibonacci[Range[41]],{1,-1,2}]^3,{-1,1}],2]]] (* or *) LinearRecurrence[{-20,-35,35,20,1},{0,-1,7,-118,2079},20] (* Harvey P. Dale, Feb 19 2012 *)
Table[(-1)^n*(1/50)*(LucasL[6 n] + 6 LucasL[2 n] - 14*(-1)^n), {n,0,50}] (* G. C. Greubel, Dec 10 2016 *)
-
{a(n) = ((-1)^n * (fibonacci(6*n) / 2 + fibonacci(6*n - 1) + 3*fibonacci(2*n - 1) + 3*fibonacci(2*n + 1)) - 7) / 25} /* Michael Somos, Aug 11 2009 */
-
concat([0], Vec(-x*(1 + x)*(1 + 12*x +x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 10 2016
A203171
Alternating sum of the fourth powers of the first n even-indexed Fibonacci numbers.
Original entry on oeis.org
0, -1, 80, -4016, 190465, -8960160, 421021536, -19779631105, 929225609456, -43653851217680, 2050801968082945, -96344039926706496, 4526119083346841280, -212631252937414840321, 9989142769386670981520, -469277078911056723578480
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- R. S. Melham, Alternating sums of fourth powers of Fibonacci and Lucas numbers, The Fibonacci Quarterly, 38(3):254-259, June-July 2000.
- Index entries for linear recurrences with constant coefficients, signature (-55,-385,-385,-55,-1)
-
with(combinat): A203171:=n->(-1)^n*(1/21)*fibonacci(2*n)*fibonacci(2*n+2)*(3*fibonacci(2*n+1)^2 - 5): seq(A203171(n), n=0..20); # Wesley Ivan Hurt, Jan 16 2017
-
a[n_Integer] := (-1)^n (1/525)(3*LucasL[8n+4] - 28*LucasL[4n+2] + 63); Table[a[n], {n, 0, 20}]
-
a(n) = sum(k=1, n, (-1)^k*fibonacci(2*k)^4); \\ Michel Marcus, Apr 16 2016
Showing 1-4 of 4 results.
Comments