A163198
Sum of the cubes of the first n even-indexed Fibonacci numbers.
Original entry on oeis.org
0, 1, 28, 540, 9801, 176176, 3162160, 56744793, 1018249596, 18271762300, 327873509425, 5883451505856, 105574253853888, 1894453118539345, 33994581881622076, 610008020755286076, 10946149791725643705, 196420688230338021808, 3524626238354441796016, 63246851602149831726825
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. See equations (3), (46), (47), and (49).
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
- K. Subba Rao, Some properties of Fibonacci numbers, Amer. Math. Monthly, 60(10):680-684, Dec. 1953. See page 682.
- Index entries for linear recurrences with constant coefficients, signature (22,-77,77,-22,1).
-
a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k]^3, {k, 1, n} ], -Sum[ Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
LinearRecurrence[{22, -77, 77, -22, 1}, {0, 1, 28, 540, 9801}, 50] (* G. C. Greubel, Dec 09 2016 *)
Accumulate[Fibonacci[Range[0,40,2]]^3] (* Harvey P. Dale, Nov 15 2023 *)
-
a(n) = sum(k=1, n, fibonacci(2*k)^3); \\ Michel Marcus, Feb 29 2016
-
concat([0], Vec(x*(1 + 6*x + x^2)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 09 2016
Melham and Ozeki references from
Wolfdieter Lang, Aug 10 2012. Also Prodinger reference added, Oct 11 2012.
A163201
Alternating sum of the cubes of the first n even-indexed Fibonacci numbers.
Original entry on oeis.org
0, -1, 26, -486, 8775, -157600, 2828384, -50754249, 910750554, -16342762150, 293258984975, -5262319011456, 94428483336576, -1694450381348881, 30405678381733850, -545607760491930150, 9790534010478427479, -175684004428133950624, 3152521545695969823584, -56569703818099420107225
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Stuart Clary and Paul D. Hemenway, On sums of cubes of Fibonacci numbers, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. For the factored closed form, let alpha equal the imaginary unit in Equation (21).
- Index entries for linear recurrences with constant coefficients, signature (-20,-35,35,20,1).
-
[(-1)^n*(1/50)*(Lucas(6*n+3)-6*Lucas(2*n+1)+2*(-1)^n): n in [0..20]]; // Vincenzo Librandi, Dec 10 2016
-
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k]^3, {k, 1, n} ], -Sum[ (-1)^k Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
LinearRecurrence[{-20, -35, 35, 20, 1}, {0, -1, 26, -486, 8775}, 50] (* or *) Table[(-1)^n*(1/50)*(LucasL[6 n + 3] - 6 LucasL[2 n + 1] + 2*(-1)^n), {n, 0, 25}] (* G. C. Greubel, Dec 10 2016 *)
-
concat([0], Vec(-x*(1 - 6*x + x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 10 2016
A163202
Alternating sum of the cubes of the first n odd-indexed Fibonacci numbers.
Original entry on oeis.org
0, -1, 7, -118, 2079, -37225, 667744, -11981593, 214999407, -3858003766, 69229057975, -1242265012561, 22291541096832, -400005474543793, 7177807000202839, -128800520527828150, 2311231562497354959, -41473367604415793593, 744209385316963976032, -13354295568100875681481
Offset: 0
-x + 7*x^2 - 118*x^3 + 2079*x^4 - 37225*x^5 + 667744*x^6 - 11981593*x^7 + ... - _Michael Somos_, Aug 11 2009
-
[((-1)^n*(Fibonacci(6*n)/2+Fibonacci(6*n-1)+ 3*Fibonacci(2*n-1)+3*Fibonacci(2*n+1))-7)/25: n in [0..20]]; // Vincenzo Librandi, Dec 19 2016
-
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k-1]^3, {k, 1, n} ], Sum[ (-1)^k Fibonacci[-2k+1]^3, {k, 1, -n} ] ]
Join[{0},Accumulate[Times@@@Partition[Riffle[Take[Fibonacci[Range[41]],{1,-1,2}]^3,{-1,1}],2]]] (* or *) LinearRecurrence[{-20,-35,35,20,1},{0,-1,7,-118,2079},20] (* Harvey P. Dale, Feb 19 2012 *)
Table[(-1)^n*(1/50)*(LucasL[6 n] + 6 LucasL[2 n] - 14*(-1)^n), {n,0,50}] (* G. C. Greubel, Dec 10 2016 *)
-
{a(n) = ((-1)^n * (fibonacci(6*n) / 2 + fibonacci(6*n - 1) + 3*fibonacci(2*n - 1) + 3*fibonacci(2*n + 1)) - 7) / 25} /* Michael Somos, Aug 11 2009 */
-
concat([0], Vec(-x*(1 + x)*(1 + 12*x +x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 10 2016
A363753
a(n) = Sum_{k=0..n} (-1)^k*F(k-1)*F(k)*F(k+1)/2, where F(n) is the Fibonacci number A000045(n).
Original entry on oeis.org
0, 0, 1, -2, 13, -47, 213, -879, 3762, -15873, 67342, -285098, 1207966, -5116586, 21674919, -91815276, 388937619, -1647563169, 6979194475, -29564334305, 125236542640, -530510487155, 2247278519916, -9519624520452, 40325776676748, -170822731106052, 723616701297373
Offset: 0
Other sequences with the product of three Fibonacci numbers as a summand (the sequence may have a shifted [and scaled] version of the summand given here).
A256178: F(2k)*F(2k+1)*F(2k+2), this sequence: (-1)^k*F(k-1)*F(k)*F(k+1),
-
LinearRecurrence[{-2, 9, -3, -4, 1}, {0, 0, 1, -2, 13}, 27]
A203170
Sum of the fourth powers of the first n odd-indexed Fibonacci numbers.
Original entry on oeis.org
0, 1, 17, 642, 29203, 1365539, 64107780, 3011403301, 141469813301, 6646055880582, 312223061019703, 14667837157106759, 689076118833981960, 32371909717271872585, 1520790680382055836761, 71444790066793903279242
Offset: 0
A215040
a(n) = F(2*n+1)^3, n>=0, with F = A000045 (Fibonacci).
Original entry on oeis.org
1, 8, 125, 2197, 39304, 704969, 12649337, 226981000, 4073003173, 73087061741, 1311494070536, 23533806109393, 422297015640625, 7577812474746632, 135978327528030989, 2440032083025183109, 43784599166913148552, 785682752921379769625, 14098504953417839657513
Offset: 0
Showing 1-6 of 6 results.
Comments