cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A163198 Sum of the cubes of the first n even-indexed Fibonacci numbers.

Original entry on oeis.org

0, 1, 28, 540, 9801, 176176, 3162160, 56744793, 1018249596, 18271762300, 327873509425, 5883451505856, 105574253853888, 1894453118539345, 33994581881622076, 610008020755286076, 10946149791725643705, 196420688230338021808, 3524626238354441796016, 63246851602149831726825
Offset: 0

Views

Author

Stuart Clary, Jul 24 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 9801, 540, 28, 1, 0, [0], 1, 28, 540, 9801, 176176, ... This is A163198-reversed followed by A163198. That is, A163198(-n) = A163198(n-1).

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := If[ n >= 0, Sum[ Fibonacci[2k]^3, {k, 1, n} ], -Sum[ Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
    LinearRecurrence[{22, -77, 77, -22, 1}, {0, 1, 28, 540, 9801}, 50] (* G. C. Greubel, Dec 09 2016 *)
    Accumulate[Fibonacci[Range[0,40,2]]^3] (* Harvey P. Dale, Nov 15 2023 *)
  • PARI
    a(n) = sum(k=1, n, fibonacci(2*k)^3); \\ Michel Marcus, Feb 29 2016
    
  • PARI
    concat([0], Vec(x*(1 + 6*x + x^2)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 09 2016

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = Sum_{k=1..n} F(2k)^3.
a(n) = A163199(n) + 1.
a(n) = (1/20)*(F(6n+3) - 12*F(2n+1) + 10).
a(n) = (1/4)*(F(2n+1)^3 - 3*F(2n+1) + 2). (K. Subba Rao)
a(n) = (1/4)*F(n)^2*L(n+1)^2*F(n-1)*L(n+2) = A163195(n) if n is even.
a(n) = (1/4)*L(n)^2*F(n+1)^2*L(n-1)*F(n+2) = A163197(n) if n is odd.
a(n) - 21 a(n-1) + 56 a(n-2) - 21 a(n-3) + a(n-4) = 8.
a(n) - 22 a(n-1) + 77 a(n-2) - 77 a(n-3) + 22 a(n-4) - a(n-5) = 0.
G.f.: (x + 6*x^2 + x^3)/(1 - 22*x + 77*x^2 - 77*x^3 + 22*x^4 - x^5) = x*(1 + 6*x + x^2)/((1 - x)*(1 - 3*x + x^2 )*(1 - 18*x + x^2)).
a(n) = (F(2*n+1)-1)^2*(F(2*n+1) + 2)/4, n>=0. See the Melham reference for a general conjecture. - Wolfdieter Lang, Aug 10 2012

Extensions

Melham and Ozeki references from Wolfdieter Lang, Aug 10 2012. Also Prodinger reference added, Oct 11 2012.

A163201 Alternating sum of the cubes of the first n even-indexed Fibonacci numbers.

Original entry on oeis.org

0, -1, 26, -486, 8775, -157600, 2828384, -50754249, 910750554, -16342762150, 293258984975, -5262319011456, 94428483336576, -1694450381348881, 30405678381733850, -545607760491930150, 9790534010478427479, -175684004428133950624, 3152521545695969823584, -56569703818099420107225
Offset: 0

Views

Author

Stuart Clary, Jul 24 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., 8775, -486, 26, -1, 0, [0], -1, 26, -486, 8775, -157600, ... This is A163201-reversed followed by A163201. That is, a(-n) = a(n-1).

Crossrefs

Programs

  • Magma
    [(-1)^n*(1/50)*(Lucas(6*n+3)-6*Lucas(2*n+1)+2*(-1)^n): n in [0..20]]; // Vincenzo Librandi, Dec 10 2016
  • Mathematica
    a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k]^3, {k, 1, n} ], -Sum[ (-1)^k Fibonacci[-2k]^3, {k, 1, -n - 1} ] ]
    LinearRecurrence[{-20, -35, 35, 20, 1}, {0, -1, 26, -486, 8775}, 50] (* or *) Table[(-1)^n*(1/50)*(LucasL[6 n + 3] - 6 LucasL[2 n + 1] + 2*(-1)^n), {n, 0, 25}] (* G. C. Greubel, Dec 10 2016 *)
  • PARI
    concat([0], Vec(-x*(1 - 6*x + x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 10 2016
    

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = Sum_{k=1..n} (-1)^k F(2k)^3.
a(n) = (1/50)*(L(6n+3) - 6 L(2n+1) + 2) if n is even.
a(n) = -(1/50)*(L(6n+3) - 6 L(2n+1) - 2) if n is odd.
a(n) = (1/2) * F(n)^2 * F(n+1)^2 * (L(2n+1) + 2) if n is even.
a(n) = -(1/2) * F(n)^2 * F(n+1)^2 * (L(2n+1) - 2) if n is odd.
a(n) + 21*a(n-1) + 56*a(n-2) + 21*a(n-3) + a(n-4) = 4.
a(n) + 20*a(n-1) + 35*a(n-2) - 35*a(n-3) - 20*a(n-4) - a(n-5) = 0.
G.f.: (-x + 6*x^2 - x^3)/(1 + 20*x + 35*x^2 - 35*x^3 - 20*x^4 - x^5) = -x*(1 - 6*x + x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)).

A163202 Alternating sum of the cubes of the first n odd-indexed Fibonacci numbers.

Original entry on oeis.org

0, -1, 7, -118, 2079, -37225, 667744, -11981593, 214999407, -3858003766, 69229057975, -1242265012561, 22291541096832, -400005474543793, 7177807000202839, -128800520527828150, 2311231562497354959, -41473367604415793593, 744209385316963976032, -13354295568100875681481
Offset: 0

Views

Author

Stuart Clary, Jul 24 2009

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., -37225, 2079, -118, 7, -1, [0], -1, 7, -118, 2079, -37225, ... This is A163202-reversed followed by A163202, without repeating the 0. That is, a(-n) = a(n). Thus a(n) is an even function of n.

Examples

			-x + 7*x^2 - 118*x^3 + 2079*x^4 - 37225*x^5 + 667744*x^6 - 11981593*x^7 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

Programs

  • Magma
    [((-1)^n*(Fibonacci(6*n)/2+Fibonacci(6*n-1)+ 3*Fibonacci(2*n-1)+3*Fibonacci(2*n+1))-7)/25: n in [0..20]]; // Vincenzo Librandi, Dec 19 2016
  • Mathematica
    a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k-1]^3, {k, 1, n} ], Sum[ (-1)^k Fibonacci[-2k+1]^3, {k, 1, -n} ] ]
    Join[{0},Accumulate[Times@@@Partition[Riffle[Take[Fibonacci[Range[41]],{1,-1,2}]^3,{-1,1}],2]]] (* or *) LinearRecurrence[{-20,-35,35,20,1},{0,-1,7,-118,2079},20] (* Harvey P. Dale, Feb 19 2012 *)
    Table[(-1)^n*(1/50)*(LucasL[6 n] + 6 LucasL[2 n] - 14*(-1)^n), {n,0,50}] (* G. C. Greubel, Dec 10 2016 *)
  • PARI
    {a(n) = ((-1)^n * (fibonacci(6*n) / 2 + fibonacci(6*n - 1) + 3*fibonacci(2*n - 1) + 3*fibonacci(2*n + 1)) - 7) / 25} /* Michael Somos, Aug 11 2009 */
    
  • PARI
    concat([0], Vec(-x*(1 + x)*(1 + 12*x +x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)) + O(x^50))) \\ G. C. Greubel, Dec 10 2016
    

Formula

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).
a(n) = Sum_{k=1..n} (-1)^k F(2k-1)^3.
a(n) = (1/50)*(L(6n) + 6 L(2n) - 14) if n is even.
a(n) = -(1/50)*(L(6n) + 6 L(2n) + 14) if n is odd.
a(n) = (1/10)*F(n)^2*(L(4 n) + 2 L(2n) + 9) if n is even.
a(n) = -(1/10)*F(n)^2*(L(4 n) - 2 L(2n) + 9) if n is odd.
a(n) + 21*a(n-1) + 56*a(n-2) + 21*a(n-3) + a(n-4) = -28.
a(n) + 20*a(n-1) + 35*a(n-2) - 35*a(n-3) - 20*a(n-4) - a(n-5) = 0.
G.f.: (-x - 13*x^2 - 13*x^3 - x^4)/(1 + 20*x + 35*x^2 - 35*x^3 - 20*x^4 - x^5) = -x*(1 + x)*(1 + 12*x +x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)).
a(-n) = a(n). - Michael Somos, Aug 11 2009

A363753 a(n) = Sum_{k=0..n} (-1)^k*F(k-1)*F(k)*F(k+1)/2, where F(n) is the Fibonacci number A000045(n).

Original entry on oeis.org

0, 0, 1, -2, 13, -47, 213, -879, 3762, -15873, 67342, -285098, 1207966, -5116586, 21674919, -91815276, 388937619, -1647563169, 6979194475, -29564334305, 125236542640, -530510487155, 2247278519916, -9519624520452, 40325776676748, -170822731106052, 723616701297373
Offset: 0

Views

Author

Hans J. H. Tuenter, Jun 19 2023

Keywords

Comments

Alternating sum of the product of three consecutive Fibonacci numbers, divided by two.
Can also be seen as the alternating sum of the Fibonomial coefficients (n+1,3), A001655.
This sequence is part of a suite of sums over triple products of Fibonacci numbers. Subba Rao (1953) gives closed-form expressions for several Fibonacci sums of this type.

Crossrefs

Other sequences with the product of three Fibonacci numbers as a summand (the sequence may have a shifted [and scaled] version of the summand given here).
A005968: F(k)^3, A119284: (-1)^k*F(k)^3, A215037: F(k-1)*F(k)*F(k+1),
A363753: (-1)^k*F(k-1)*F(k)*F(k+1), A163198: F(2k)^3, A163200: F(2k+1)^3,
A256178: F(2k)*F(2k+1)*F(2k+2), this sequence: (-1)^k*F(k-1)*F(k)*F(k+1),
A363754: F(2k-1)*F(2k)*F(2k+1).

Programs

  • Mathematica
    LinearRecurrence[{-2, 9, -3, -4, 1}, {0, 0, 1, -2, 13}, 27]

Formula

a(n) = ((-1)^n*(F(n+1)^3 - F(n)^3) + F(n+2) - 2)/8.
a(n) = ((-1)^n*F(3*n+1) + 4*F(n+2) - 5)/20.
a(n) = -2*a(n-1) + 9*a(n-2) - 3*a(n-3) - 4*a(n-4) + a(n-5).
a(-n) = A215037(n-3).
G.f.: x^2/((1 - x)*(1 + 4*x - x^2)*(1 - x - x^2)).
20*a(n) = (-1)^n*A033887(n) + 4*A000045(n+2) - 5. - R. J. Mathar, Jun 27 2023

A203170 Sum of the fourth powers of the first n odd-indexed Fibonacci numbers.

Original entry on oeis.org

0, 1, 17, 642, 29203, 1365539, 64107780, 3011403301, 141469813301, 6646055880582, 312223061019703, 14667837157106759, 689076118833981960, 32371909717271872585, 1520790680382055836761, 71444790066793903279242
Offset: 0

Views

Author

Stuart Clary, Dec 30 2011

Keywords

Comments

Natural bilateral extension (brackets mark index 0): ..., -1365539, -29203, -642, -17, -1, [0], 1, 17, 642, 29203, 1365539, ... That is, a(-n) = -a(n).

Crossrefs

Programs

  • Mathematica
    a[n_Integer] := (1/75)(Fibonacci[8n] + 12*Fibonacci[4n] + 18 n); Table[a[n], {n, 0, 20}]

Formula

Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} F(2k-1)^4.
Closed form: a(n) = (1/75)(F(8n) + 12 F(4n) + 18 n).
Recurrence: a(n) - 56 a(n-1) + 440 a(n-2) - 770 a(n-3) + 440 a(n-4) - 56 a(n-5) + a(n-6) = 0.
G.f.: A(x) = (x - 39 x^2 + 130 x^3 - 39 x^4 + x^5)/(1 - 56 x + 440 x^2 - 770 x^3 + 440 x^4 - 56 x^5 + x^6) = x(1 - 39 x + 130 x^2 - 39 x^3 + x^4)/((1 - x)^2 (1 - 7 x + x^2)(1 - 47 x + x^2)).

A215040 a(n) = F(2*n+1)^3, n>=0, with F = A000045 (Fibonacci).

Original entry on oeis.org

1, 8, 125, 2197, 39304, 704969, 12649337, 226981000, 4073003173, 73087061741, 1311494070536, 23533806109393, 422297015640625, 7577812474746632, 135978327528030989, 2440032083025183109, 43784599166913148552, 785682752921379769625, 14098504953417839657513
Offset: 0

Views

Author

Wolfdieter Lang, Aug 10 2012

Keywords

Comments

Bisection (odd part) of A056570. From this follows the o.g.f., and its partial fraction decomposition leads to the explicit formula given below. For the computation see A215039 for a comment on Chebyshev's S-polynomials.

Crossrefs

Cf. A000045, A056570, A163200 (partial sums).

Programs

  • Mathematica
    Fibonacci[2*Range[0,20]+1]^3 (* Harvey P. Dale, Jan 24 2013 *)

Formula

a(n) = F(2*n+1)^3, n>=0, with F=A000045.
O.g.f.: (1-x)*(1-12*x+x^2)/((1-3*x+x^2)*(1-18*x+x^2)) (from the bisection (odd part) of A056570).
a(n) = (12*F(2*n+1) + F(6*(n+1)) - F(6*n))/20, n>=0.
a(n) = 1 + (4*Sum_{k=1..n} F(6*k) + 3*Sum_{k=1..n} F(2*k)) / 5 (Davenport, 2024). - Amiram Eldar, Aug 29 2024
Showing 1-6 of 6 results.