cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A163437 Number of different fixed (possibly) disconnected polyominoes (of any area) bounded tightly by an n X n square.

Original entry on oeis.org

1, 7, 322, 51472, 29671936, 64588152832, 545697103347712, 18161310923858378752, 2399054119350722118025216, 1262710910458264839283982467072, 2653270028014955753823799266500411392
Offset: 1

Views

Author

David Bevan, Jul 28 2009

Keywords

Examples

			a(2)=7: 2 rotations of the strictly disconnected domino consisting of two squares connected at a vertex, 4 rotations of the L tromino, and the square tetromino.
		

Crossrefs

Cf. A162677 (bound not necessarily tight), A163433 (fixed disconnected trominoes), A163434 (fixed disconnected tetrominoes), A163435 (fixed disconnected pentominoes), A163436 (fixed disconnected n-ominoes).

Programs

  • Mathematica
    Table[2^(n^2) - 4*2^((n - 1)*n) + 4*2^((n - 1)^2) + 2*2^((n - 2)*n) -
      4*2^((n - 2)*(n - 1)) + 2^((n - 2)^2), {n, 1, 25}] (* G. C. Greubel, Dec 23 2016 *)

Formula

a(n) = 2^(n^2) - 4*2^((n-1)*n) + 4*2^((n-1)^2) + 2*2^((n-2)*n) - 4*2^((n-2)*(n-1)) + 2^((n-2)^2).

A077958 Expansion of 1/(1-2*x^3).

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32, 0, 0, 64, 0, 0, 128, 0, 0, 256, 0, 0, 512, 0, 0, 1024, 0, 0, 2048, 0, 0, 4096, 0, 0, 8192, 0, 0, 16384, 0, 0, 32768, 0, 0, 65536, 0, 0, 131072, 0, 0, 262144, 0, 0, 524288, 0, 0, 1048576, 0, 0, 2097152, 0, 0, 4194304, 0, 0, 8388608, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

a(n) is the number of L-tromino tilings of the n X 2 rectangle (see Exercise 2 in Grinberg). - Stefano Spezia, Nov 26 2019

Crossrefs

Programs

Formula

From Stefano Spezia, Nov 26 2019: (Start)
a(n) = 2^(n/3) if 3 divides n, otherwise a(n) = 0 (see Exercise 2 in Grinberg).
E.g.f.: (1/3)*(exp(-(-2)^(1/3)*x) + exp(2^(1/3)*x) + exp((-1)^(2/3)*2^(1/3)*x)). (End)

A163434 Number of different fixed (possibly) disconnected tetrominoes bounded tightly by an n X n square.

Original entry on oeis.org

0, 1, 70, 425, 1426, 3577, 7526, 14065, 24130, 38801, 59302, 87001, 123410, 170185, 229126, 302177, 391426, 499105, 627590, 779401, 957202, 1163801, 1402150, 1675345, 1986626, 2339377, 2737126, 3183545, 3682450, 4237801, 4853702
Offset: 1

Views

Author

David Bevan, Jul 28 2009

Keywords

Examples

			a(2)=1: the (connected) square tetromino.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Table[(2 n^2 - 4 n + 1)*(3 n^2 - 6 n + 1), {n, 2, 50}]] (* or *) Join[{0}, LinearRecurrence[{5,-10,10,-5,1}, {1, 70, 425, 1426, 3577}, 50]] (* G. C. Greubel, Dec 23 2016 *)
  • PARI
    concat([0], Vec(x^2*(1+65*x+85*x^2-9*x^3+2*x^4)/(1-x)^5 + O(x^50))) \\ G. C. Greubel, Dec 23 2016

Formula

a(n) = (2n^2 -4n +1)*(3n^2 -6n +1), n>1.
G.f.: x^2*(1+65*x+85*x^2-9*x^3+2*x^4)/(1-x)^5. - Colin Barker, Apr 25 2012
E.g.f.: (6*x^4 + 12*x^3 - x^2 + x + 1)*exp(x) - 2 x - 1. - G. C. Greubel, Dec 23 2016

A103115 a(n) = 6*n*(n-1) - 1.

Original entry on oeis.org

-1, -1, 11, 35, 71, 119, 179, 251, 335, 431, 539, 659, 791, 935, 1091, 1259, 1439, 1631, 1835, 2051, 2279, 2519, 2771, 3035, 3311, 3599, 3899, 4211, 4535, 4871, 5219, 5579, 5951, 6335, 6731, 7139, 7559, 7991, 8435, 8891, 9359, 9839, 10331, 10835, 11351, 11879, 12419
Offset: 0

Views

Author

Jacob Landon (jacoblandon(AT)aol.com), May 09 2009

Keywords

Comments

Star numbers A003154 minus 2.
What A163433 does for a triangle, this sequence is doing for a square but giving one-half the results. Take a square with vertices n, n+1, n+2, and n+3 and find the sum of the four products of each four vertices times the sum of the other three; at n you have n((n+1)+(n+2)+(n+3)) and so on for the other three vertices. The result of all four is 12*n^2 + 36*n + 22; half this is 6*n^2 + 18*n + 11 and gives the numbers in this sequence starting with n = 0. - J. M. Bergot, May 23 2012
Multiplying a(n) by 16 gives the sum of the convolution with itself of each of the 24 permutations of four consecutive numbers. - J. M. Bergot, May 15 2017

Crossrefs

Programs

  • Magma
    [6*n*(n-1)-1: n in [0..50]]; // Vincenzo Librandi, May 16 2017
    
  • Mathematica
    Table[6n(n-1)-1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{-1,-1,11},50] (* Harvey P. Dale, Nov 14 2011 *)
    CoefficientList[Series[(1 - 2 x - 11 x^2) / (x - 1)^3, {x, 0, 50}], x] (* Vincenzo Librandi, May 16 2017 *)
  • PARI
    a(n)=6*n*(n-1)-1 \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = A003154(n) - 2.
G.f.: (1-2*x-11*x^2)/(x-1)^3. - R. J. Mathar, May 11 2009 (adapted by Vincenzo Librandi, May 16 2017).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=-1, a(1)=-1, a(2)=11. - Harvey P. Dale, Nov 14 2011
a(n) = (n-2)*(n-1 + n + n+1) + (n-1)*(n + n+1) + n*(n+1), which is applying A000914 to four consecutive numbers. - J. M. Bergot, May 15 2017
Sum_{n>=1} 1/a(n) = tan(sqrt(5/3)*Pi/2)*Pi/(2*sqrt(15)). Amiram Eldar, Aug 20 2022
E.g.f.: exp(x)*(6*x^2 - 1). - Elmo R. Oliveira, Jan 16 2025

Extensions

Edited and extended by R. J. Mathar, May 11 2009
Entries rechecked by N. J. A. Sloane, Jul 18 2009

A162245 Triangle T(n,m) = 6*m*n + 3*m + 3*n + 1 read by rows.

Original entry on oeis.org

13, 22, 37, 31, 52, 73, 40, 67, 94, 121, 49, 82, 115, 148, 181, 58, 97, 136, 175, 214, 253, 67, 112, 157, 202, 247, 292, 337, 76, 127, 178, 229, 280, 331, 382, 433, 85, 142, 199, 256, 313, 370, 427, 484, 541, 94, 157, 220, 283, 346, 409, 472, 535, 598, 661
Offset: 1

Views

Author

Vincenzo Librandi, Jun 28 2009

Keywords

Comments

If h belongs to the main diagonal of the triangle then 6*h+3 is a square since T(n,n) = (3/2)*(2*n+1)^2-1/2 and 6*T(n,n)+3 = 9*(2*n+1)^2. Also, the first column is A017209 (after 4). - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
13;
22, 37;
31, 52,  73;
40, 67,  94,  121;
49, 82,  115, 148, 181;
58, 97,  136, 175, 214, 253;
67, 112, 157, 202, 247, 292, 337;
76, 127, 178, 229, 280, 331, 382, 433; etc.
		

Crossrefs

Programs

  • Magma
    [6*n*k + 3*n + 3*k + 1:  k in [1..n],  n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    Flatten@Table[6*m*n + 3*m + 3*n + 1, {n, 20}, {m, n}] (* Vincenzo Librandi, Mar 03 2012 *)

Formula

Row sums: Sum_{m=1..n} T(n,m) = n*(5+6*n^2+15*n)/2. - R. J. Mathar, Jul 26 2009
T(n,m) = 3*A083487(n,m)+1. - R. J. Mathar, Jul 26 2009
T(k,k) = A003154(k+1) and T(k+1,k) = A163433(k+2). - Avi Friedlich, May 22 2015

Extensions

Edited by R. J. Mathar, Jul 26 2009

A289181 Number of 6-cycles in the n X n knight graph.

Original entry on oeis.org

0, 0, 0, 20, 164, 616, 1348, 2352, 3628, 5176, 6996, 9088, 11452, 14088, 16996, 20176, 23628, 27352, 31348, 35616, 40156, 44968, 50052, 55408, 61036, 66936, 73108, 79552, 86268, 93256, 100516, 108048, 115852, 123928, 132276, 140896, 149788, 158952, 168388, 178096
Offset: 1

Views

Author

Eric W. Weisstein, Jun 27 2017

Keywords

Crossrefs

Cf. A163433 (4-cycles).

Programs

  • Mathematica
    Table[Length[FindCycle[KnightTourGraph[n, n], {6}, All]], {n, 20}]
    Table[Piecewise[{{0, n < 4}, {20, n == 4}, {164, n == 5}}, 4 (34 n^2 - 259 n + 484)], {n, 20}]
    Join[{0, 0, 0, 20, 164}, LinearRecurrence[{3, -3, 1}, {1036, 408, 52}, {6, 20}]]
    CoefficientList[Series[(4 x^3 (-5 - 26 x - 46 x^2 + 7 x^3 + 2 x^4))/(-1 + x)^3, {x, 0, 20}], x]
  • PARI
    a(n)=4*if(n>5,34*n^2 - 259*n + 484, max(36*n-139, 0)) \\ Charles R Greathouse IV, Oct 21 2022

Formula

For n > 5, a(n) = 4 (34 n^2 - 259 n + 484).
G.f.: (4*x^4*(-5 - 26*x - 46*x^2 + 7*x^3 + 2*x^4))/(-1 + x)^3.
Showing 1-6 of 6 results.