cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140811 a(n) = 6*n^2 - 1.

Original entry on oeis.org

-1, 5, 23, 53, 95, 149, 215, 293, 383, 485, 599, 725, 863, 1013, 1175, 1349, 1535, 1733, 1943, 2165, 2399, 2645, 2903, 3173, 3455, 3749, 4055, 4373, 4703, 5045, 5399, 5765, 6143, 6533, 6935, 7349, 7775, 8213, 8663, 9125, 9599, 10085, 10583, 11093, 11615
Offset: 0

Views

Author

Paul Curtz, Jul 16 2008

Keywords

Comments

Also: The numerators in the j=2 column of the array a(i,j) defined in A140825, where the columns j=0 and j=1 are represented by A000012 and A005408. This could be extended to column j=3: 1, -1, 9, 55, 161, ... The common feature of these sequences derived from a(i,j) is that their j-th differences are constant sequences defined by A091137(j).
a(n) is the set of all k such that 6*k + 6 is a perfect square. - Gary Detlefs, Mar 04 2010
The identity (6*n^2 - 1)^2 - (9*n^2 - 3)*(2*n)^2 = 1 can be written as a(n+1)^2 - A157872(n)*A005843(n+1)^2 = 1. - Vincenzo Librandi, Feb 05 2012
Apart from first term, sequence found by reading the line from 5, in the direction 5, 23, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012
From Paul Curtz, Sep 17 2018: (Start)
Terms from center to right in the following spiral:
.
65--63--61--59
/ \
67 31--29--27 57
/ / \ \
69 33 9---7 25 55
/ / / \ \ \
71 35 11 -1===5==23==53==>
/ / / / / /
37 13 1---3 21 51
\ \ / /
39 15--17--19 49
\ /
41--43--45--47 (End)

References

  • P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Note 12, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969, 132 pages, pp. 28-36. CCSA, then CELAR. Now DGA Maitrise de l'Information 35131 Bruz.

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) + 12.
First differences: a(n+1) - a(n) = A017593(n).
Second differences: A071593(n+1) - A071593(n) = 12.
G.f.: (1-8*x-5*x^2)/(x-1)^3. - Jaume Oliver Lafont, Aug 30 2009
From Vincenzo Librandi, Feb 05 2012: (Start)
a(n) = a(n-1) + 12*n - 6.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A033581(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = A032528(2*n) - 1. - Adriano Caroli, Jul 21 2013
For n > 0, a(n) = floor(3/(cosh(1/n) - 1)) = floor(1/(n*sinh(1/n) - 1)); for similar formulas for cosine and sine, see A033581. - Clark Kimberling, Oct 19 2014, corrected by M. F. Hasler, Oct 21 2014
a(-n) = a(n). - Paul Curtz, Sep 17 2018
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(6))*cot(Pi/sqrt(6)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(6))*csc(Pi/sqrt(6)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(6))*csc(Pi/sqrt(6)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(6))*sin(Pi/sqrt(3))/sqrt(2). (End)
a(n) = A003154(n+1) - 2*A016777(n). - Leo Tavares, May 13 2022
E.g.f.: exp(x)*(6*x^2 + 6*x - 1). - Elmo R. Oliveira, Jan 16 2025

Extensions

Edited and extended by R. J. Mathar, Aug 06 2008
Better description Ray Chandler, Feb 03 2009

A143978 a(n) = floor(2*n*(n+1)/3).

Original entry on oeis.org

1, 4, 8, 13, 20, 28, 37, 48, 60, 73, 88, 104, 121, 140, 160, 181, 204, 228, 253, 280, 308, 337, 368, 400, 433, 468, 504, 541, 580, 620, 661, 704, 748, 793, 840, 888, 937, 988, 1040, 1093, 1148, 1204, 1261, 1320, 1380, 1441, 1504, 1568, 1633, 1700, 1768, 1837
Offset: 1

Views

Author

Clark Kimberling, Sep 06 2008

Keywords

Comments

Second diagonal of array A143979, which counts certain unit squares in a lattice. First diagonal: A030511.
Convolution of A042965 with A000012, convolution of A131534 with A000027, and convolution of A106510 with A000217. - L. Edson Jeffery, Jan 24 2015
From Miquel A. Fiol, Aug 31 2024: (Start)
a(n+1) is the maximum number N of vertices of a circulant digraph with steps +-s1, s2, and diameter n.
Depending on the value of n, the following table shows the values of N, s1, and s2:
n | 3*r | 3*r-1 | 3*r-2 |
N | 6*r^2+6*r+1 | 6*r^2+2*r | 6*r^2-2*r |
s1 | 1 | r | r |
s2 | 6*r+3 | 3*r+1 | 3*r-1 |
(End)

Crossrefs

Cf. A000217, A030511, A042965 (first differences), A106510, A131534, A143979.

Programs

  • Maple
    A143978:= n-> (6*n*(n+1) -1 + `mod`(n+2,3) - `mod`(n+1,3))/9;
    seq(A143978(n), n=1..60); # G. C. Greubel, May 27 2020
  • Mathematica
    Table[(6*n^2 +6*n -1  + Mod[n+2, 3] - Mod[n+1, 3])/9, {n, 60}] (* G. C. Greubel, May 27 2020 *)
    Table[Floor[2n (n+1)/3],{n,60}] (* or *) LinearRecurrence[{2,-1,1,-2,1},{1,4,8,13,20},60] (* Harvey P. Dale, Aug 12 2025 *)

Formula

From R. J. Mathar, Oct 05 2009: (Start)
G.f.: x*(1 + x)^2/((1 + x + x^2)*(1-x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5). (End)
a(n) = Sum_{k=1..(n+1)} A042965(k). - Klaus Purath, May 23 2020
From G. C. Greubel, May 27 2020: (Start)
a(n) = (ChebyshevU(n, -1/2) - ChebyshevU(n-1, -1/2) + (6*n^2 + 6*n -1))/9.
a(n) = (JacobiSymbol(n+1, 3) - JacobiSymbol(n, 3) + (6*n^2 + 6*n -1))/9.
a(n) = (A102283(n+1) - A102283(n) + A103115(n+1))/9
a(n) = (A131713(n) + A103115(n+1))/9. (End)
Sum_{n>=1} 1/a(n) = 3/2 + (tan(Pi/(2*sqrt(3)))-1)*Pi/(2*sqrt(3)). - Amiram Eldar, Sep 27 2022
E.g.f.: exp(-x/2)*(exp(3*x/2)*(6*x^2 + 12*x - 1) + cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Apr 05 2023
Showing 1-2 of 2 results.