cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A180278 Smallest nonnegative integer k such that k^2 + 1 has exactly n distinct prime factors.

Original entry on oeis.org

0, 1, 3, 13, 47, 447, 2163, 24263, 241727, 2923783, 16485763, 169053487, 4535472963, 36316463227, 879728844873, 4476534430363, 119919330795347, 1374445897718223, 106298577886531087
Offset: 0

Views

Author

Michel Lagneau, Jan 17 2011

Keywords

Examples

			a(2) = 3 because the 2 distinct prime factors of 3^2 + 1 are {2, 5};
a(10) = 16485763 because the 10 distinct prime factors of 16485763^2 + 1 are {2, 5, 13, 17, 29, 37, 41, 73, 149, 257}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{k = 1}, If[n == 0, Return[0]]; Monitor[While[PrimeNu[k^2 + 1] != n, k++]; k, {n, k}]]; Table[a[n], {n, 0, 8}] (* Robert P. P. McKone, Sep 13 2023 *)
  • PARI
    a(n)=for(k=0, oo, if(omega(k^2+1) == n, return(k))) \\ Andrew Howroyd, Sep 12 2023
  • Python
    from itertools import count
    from sympy import factorint
    def A180278(n):
        return next(k for k in count() if len(factorint(k**2+1)) == n) # Pontus von Brömssen, Sep 12 2023
    

Formula

a(n) >= sqrt(A185952(n)-1). - Charles R Greathouse IV, Feb 17 2015
a(n) <= A164511(n). - Daniel Suteu, Feb 20 2023

Extensions

a(9), a(10) and example corrected; a(11) added by Donovan Johnson, Aug 27 2012
a(12) from Giovanni Resta, May 10 2017
a(13)-a(17) from Daniel Suteu, Feb 20 2023
Name clarified and incorrect programs removed by Pontus von Brömssen, Sep 12 2023
a(18) from Max Alekseyev, Feb 24 2024

A380969 a(n) is the smallest k such that tau(k^2 + 1) is equal to 2^n, where tau = A000005 and a(n) = -1 if no such k exists.

Original entry on oeis.org

0, 1, 3, 13, 47, 307, 2163, 17557, 191807, 1413443, 16485763, 169053487
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Feb 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{k=0}, While[DivisorSigma[0, k^2+1]!=2^n, k++]; k]; Array[a, 9,0] (* Stefano Spezia, Feb 10 2025 *)
  • PARI
    a(n) = my(k=0); while (numdiv(k^2+1) != 2^n, k++); k; \\ Michel Marcus, Feb 09 2025

Formula

a(n) = A353008(2^(n-1)) for n > 0.

Extensions

a(10)-a(11) from Stefano Spezia, Feb 12 2025
Showing 1-2 of 2 results.