A164640
a(n) = 8*a(n-2) for n > 2; a(1) = 1, a(2) = 6.
Original entry on oeis.org
1, 6, 8, 48, 64, 384, 512, 3072, 4096, 24576, 32768, 196608, 262144, 1572864, 2097152, 12582912, 16777216, 100663296, 134217728, 805306368, 1073741824, 6442450944, 8589934592, 51539607552, 68719476736, 412316860416
Offset: 1
-
[ n le 2 select 5*n-4 else 8*Self(n-2): n in [1..26] ];
-
LinearRecurrence[{0,8},{1,6},40] (* Harvey P. Dale, Nov 06 2013 *)
-
a(n)=(7-(-1)^n)*2^(1/4*(6*n-15+3*(-1)^n)) \\ Charles R Greathouse IV, Oct 07 2015
A164545
a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
Original entry on oeis.org
1, 8, 36, 176, 848, 4096, 19776, 95488, 461056, 2226176, 10748928, 51900416, 250597376, 1209991168, 5842354176, 28209381376, 136206942208, 657665294336, 3175488946176, 15332616962048, 74032423632896, 357460162379776
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(2+2*r)^n+(2-3*r)*(2-2*r)^n)/4: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
-
LinearRecurrence[{4,4},{1,8},30] (* Harvey P. Dale, Dec 25 2011 *)
-
[(2*i)^n*(chebyshev_U(n, -i) - 2*i*chebyshev_U(n-1, -i)) for n in (0..30)] # G. C. Greubel, Jul 17 2021
A154346
a(n) = 12*a(n-1) - 28*a(n-2) for n > 1, with a(0)=1, a(1)=12.
Original entry on oeis.org
1, 12, 116, 1056, 9424, 83520, 738368, 6521856, 57587968, 508443648, 4488860672, 39629905920, 349870772224, 3088811900928, 27269361188864, 240745601040384, 2125405099196416, 18763984361226240, 165656469557215232
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((6+2*r)^n-(6-2*r)^n)/(4*r): n in [1..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
-
Join[{a=1,b=12},Table[c=12*b-28*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)
LinearRecurrence[{12,-28},{1,12},20] (* Harvey P. Dale, May 23 2012 *)
Rest@ CoefficientList[Series[x/(1 - 12 x + 28 x^2), {x, 0, 19}], x] (* Michael De Vlieger, Sep 13 2016 *)
-
a(n)=([0,1; -28,12]^(n-1)*[1;12])[1,1] \\ Charles R Greathouse IV, Sep 13 2016
-
[lucas_number1(n,12,28) for n in range(1, 20)] # Zerinvary Lajos, Apr 27 2009
A330390
G.f.: (1 + 15*x) / (1 - 2*x - 17*x^2).
Original entry on oeis.org
1, 17, 51, 391, 1649, 9945, 47923, 264911, 1344513, 7192513, 37241747, 196756215, 1026622129, 5398099913, 28248776019, 148265250559, 776759693441, 4074028646385, 21352972081267, 111964431151079, 586929387683697, 3077254104935737, 16132307800494323
Offset: 0
-
CoefficientList[Series[(1+15x)/(1-2x-17x^2),{x,0,30}],x] (* or *) LinearRecurrence[{2,17},{1,17},30] (* Harvey P. Dale, Jul 31 2021 *)
-
Vec((1 + 15*x) / (1 - 2*x - 17*x^2) + O(x^25)) \\ Colin Barker, Jan 25 2020
Showing 1-4 of 4 results.
Comments