cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A164544 a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 21, 91, 329, 1295, 4893, 18851, 71953, 275863, 1055397, 4041835, 15471449, 59235743, 226771629, 868193459, 3323788321, 12724930855, 48716379957, 186507275899, 714029211497, 2733609354287, 10465423189053, 40066111858115
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

Keywords

Comments

Binomial transform of A164640. Inverse binomial transform of A164545.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(1+2*r)^n+(2-3*r)*(1-2*r)^n)/4: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
    
  • Mathematica
    LinearRecurrence[{2,7},{1,7},40] (* Harvey P. Dale, Jul 15 2012 *)
  • Sage
    [(i*sqrt(7))^(n-1)*(i*sqrt(7)*chebyshev_U(n, -i/sqrt(7)) + 5*chebyshev_U(n-1, -i/sqrt(7))) for n in (0..40)] # G. C. Greubel, Jul 18 2021

Formula

a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
a(n) = ((2+3*sqrt(2))*(1+2*sqrt(2))^n + (2-3*sqrt(2))*(1-2*sqrt(2))^n)/4.
G.f.: (1+5*x)/(1-2*x-7*x^2).
a(n)/a(n-1) ~ 1 + 2*sqrt(2). - Kyle MacLean Smith, Dec 15 2019
E.g.f.: exp(x)*cosh(2*sqrt(2)*x) + 3*exp(x)*sinh(2*sqrt(2)*x)/sqrt(2). - Stefano Spezia, Dec 16 2019
From G. C. Greubel, Jul 18 2021: (Start)
a(n) = (i*sqrt(7))^(n-1)*(i*sqrt(7)*ChebyshevU(n, -i/sqrt(7)) + 5*ChebyshevU(n-1, -i/sqrt(7))).
a(n) = Sum_{j=0..floor(n/2)} binomial(n-k, k)*((7*n -12*k)/(n-k))*7^k*2^(n-2*k-1). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 19 2009

A164545 a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 8.

Original entry on oeis.org

1, 8, 36, 176, 848, 4096, 19776, 95488, 461056, 2226176, 10748928, 51900416, 250597376, 1209991168, 5842354176, 28209381376, 136206942208, 657665294336, 3175488946176, 15332616962048, 74032423632896, 357460162379776
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

Keywords

Comments

Binomial transform of A164544. Second binomial transform of A164640. Inverse binomial transform of A038761.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(2+2*r)^n+(2-3*r)*(2-2*r)^n)/4: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
    
  • Mathematica
    LinearRecurrence[{4,4},{1,8},30] (* Harvey P. Dale, Dec 25 2011 *)
  • Sage
    [(2*i)^n*(chebyshev_U(n, -i) - 2*i*chebyshev_U(n-1, -i)) for n in (0..30)] # G. C. Greubel, Jul 17 2021

Formula

a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
a(n) = ((2+3*sqrt(2))*(2+2*sqrt(2))^n + (2-3*sqrt(2))*(2-2*sqrt(2))^n)/4.
G.f.: (1 + 4*x)/(1 - 4*x - 4*x^2).
a(n) = (2*i)^n*( ChebyshevU(n, -i) - 2*i*ChebyshevU(n-1, -i) ). - G. C. Greubel, Jul 17 2021

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 19 2009

A164546 a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 10.

Original entry on oeis.org

1, 10, 72, 496, 3392, 23168, 158208, 1080320, 7376896, 50372608, 343965696, 2348744704, 16038232064, 109515898880, 747821334528, 5106443485184, 34868977205248, 238100269760512, 1625850340442112, 11102000565452800
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

Keywords

Comments

Binomial transform of A038761. Fourth binomial transform of A164640. Inverse binomial transform of A164547.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(4+2*r)^n+(2-3*r)*(4-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
    
  • Mathematica
    LinearRecurrence[{8,-8}, {1,10}, 30] (* G. C. Greubel, Jul 17 2021 *)
  • Sage
    [2*(2*sqrt(2))^(n-1)*(sqrt(2)*chebyshev_U(n, sqrt(2)) + chebyshev_U(n-1, sqrt(2))) for n in (0..30)] # G. C. Greubel, Jul 17 2021

Formula

a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
a(n) = ((2+3*sqrt(2))*(4+2*sqrt(2))^n + (2-3*sqrt(2))*(4-2*sqrt(2))^n)/4.
G.f.: (1 + 2*x)/(1 - 8*x + 8*x^2).
a(n) = 2*(2*sqrt(2))^(n-1)*(sqrt(2)*chebyshev_U(n, sqrt(2)) + chebyshev_U(n-1, sqrt(2))). - G. C. Greubel, Jul 17 2021

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 19 2009

A164547 a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 11.

Original entry on oeis.org

1, 11, 93, 743, 5849, 45859, 359157, 2811967, 22014001, 172336571, 1349127693, 10561555223, 82680381449, 647257375699, 5067007272357, 39666697336687, 310527849736801, 2430944642644331, 19030472980917693, 148978670884223303
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

Keywords

Comments

Binomial transform of A164546.
Fifth binomial transform of A164640.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(5+2*r)^n+(2-3*r)*(5-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
    
  • Mathematica
    LinearRecurrence[{10,-17},{1,11},30] (* Harvey P. Dale, Jun 04 2012 *)
  • Sage
    [(17)^((n-1)/2)*(sqrt(17)*chebyshev_U(n, 5/sqrt(17)) + chebyshev_U(n-1, 5/sqrt(17))) for n in (0..30)] # G. C. Greubel, Jul 17 2021

Formula

a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 11.
a(n) = ((2+3*sqrt(2))*(5+2*sqrt(2))^n + (2-3*sqrt(2))*(5-2*sqrt(2))^n)/4.
G.f.: (1+x)/(1 - 10*x + 17*x^2).
a(n) = (17)^((n-1)/2)*(sqrt(17)*ChebyshevU(n, 5/sqrt(17)) + ChebyshevU(n-1, 5/sqrt(17))). - G. C. Greubel, Jul 17 2021

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 19 2009

A181107 Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.

Original entry on oeis.org

1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
Offset: 1

Views

Author

Erdos Pal, Oct 03 2010

Keywords

Comments

The n-th row is {T(n,0),T(n,1),...,T(n,n-1)}.
Let m denote the prime power p^e.
T(m,0) = A020478(m) = (p^(e+1) + p^e-1)*p^(2*e-1).
T(m,1) = A000056(m) = (p^2-1)*p^(3*e-2).
T(prime(n),1) = A127917(n).
Sum_{k=1..n-1} T(n,k) = A005353(n).
T(n,1) = n*A007434(n) for n>=1 because A000056(n) = n*Jordan_Function_J_2(n).
T(2^n,1) = A083233(n) = A164640(2n) for n>=1. Proof: a(n):=T(2^n,1); a(1)=6, a(n)=8*a(n-1); A083233(1)=6 and A083233(n) is a geometric series with ratio 8 (because of its g.f.), too; A164640 = {b(1)=1, b(2)=6, b(n)=8*b(n-2)}.
T(2^n,0) = A165148(n) for n>=0, because 2*T(2^n,0) = (3*2^n-1)*4^n.
T(2^e,2) = A003951(e) for 2 <= e. Proof: T(2^e,2) = 9*8^(e-1) is a series with ratio 8 and initial term 72, as A003951(2...inf) is.
Working with consecutive powers of a prime p, we need a definition (0 <= i < e):
N(p^e,i):=#{k: 0 < k < p^e, gcd(k,p^e) = p^i} = (p-1)*p^(e-1-i). We say that these k's belong to i (respect to p^e). Note that N(p^e,0) = EulerPhi(p^e), and if 0 < k < p^e then gcd(k,p^e) = gcd(k,p^(e+1)). Let T(p^e,[i]) denote the common value of T(p^e,k)'s, where k's belong to i (q.v.PROGRAM); for example, T(p^e,[0]) = T(p^e,1). The number of the 2 X 2 matrices over Z(p^e), T(p^e,0) + Sum_{i=0..e-1} T(p^e,[i])*N(p^e,i) = p^(4e) will be useful.
On the hexagon property: Let prime p be given and let T(p^e,[0]), T(p^e,[1]), T(p^e,[2]), ..., T(p^e,[e-2]), T(p^e,[e-1]) form the e-th row of a Pascal-like triangle, e>=1. Let denote X(r,s) an element of the triangle and its value T(p^r,[s]). Let positive integers a and b given, so that the entries A(m-a,n-b), B(m-a,n), C(m,n+a), D(m+b,n+a), E(m+b,n), F(m,n-b) of the triangle form a hexagon spaced around T(p^m,[n]); if a=b=1 then they surround it. If A*C*E = B*D*F, then we say that the triangle T(.,.) has the "hexagon property". (In the case of binomial coefficients X(r,s) = COMB(r,s), the "hexagon property" holds (see [Gupta]) and moreover gcd(A,C,E) = gcd(B,D,F) (see [Hitotumatu & Sato]).)
Corollary 2.2 in [Brent & McKay] says that, for the d X d matrices over Z(p^e), (mutatis mutandis) T_d(p^e,0) = K*(1-P(d+e-1)/P(e-1)) and T_d(p^e,[i]) = K*(q^e)*((1-q^d)/(1-q))*P(d+i-1)/P(i), where q=1/p, K=(p^e)^(d^2), P(t) = Product_{j=1..t} (1-q^j), P(0):=1. (For the case d=2, we have T(p^e,[i]) = (p+1)*(p^(i+1)-1)*p^(3*e-i-2).) Due to [Brent & McKay], it can be simply proved that for d X d matrices the "hexagon property" is true. The formulation implies an obvious generalization: For the entries A(r,u), B(r,v), C(s,w), D(t,w), E(t,v), F(s,u) of the T_d(.,.)-triangle, a hexagon-like property A*C*E = B*D*F holds. This is false in general for the COMB(.,.)-triangle.
Another (rotated-hexagon-like) property: for the entries A(m-b1,n), B(m-a1,n+c2), C(m+a2,n+c2), D(m+b2,n), E(m+a2,n-c1), F(m-a1,n-c1) of the T_d(.,.)-triangle, the property A*C*E = B*D*F holds, if and only if 2*(a1 + a2) = b1 + b2. This is also in general false for COMB(.,.)-triangle.

Examples

			From _Andrew Howroyd_, Jul 16 2018: (Start)
Triangle begins:
    1;
   10,   6;
   33,  24,  24;
   88,  48,  72,  48;
  145, 120, 120, 120, 120;
  330, 144, 240, 198, 240, 144;
  385, 336, 336, 336, 336, 336, 336;
  736, 384, 576, 384, 672, 384, 576, 384;
  945, 648, 648, 864, 648, 648, 864, 648, 648;
  ... (End)
		

Crossrefs

Column k=0 is A020478.
Column k=1 is A000056.
Row sums are A005353.

Programs

  • Other
      (* computing T(p^e,k) ; p=prime, 1<=e, 0<=k
    				
  • PARI
    S(p,e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))}
    T(n)={my(f=factor(n), v=vector(n,i,1)); for(i=1, #f~, my(r=S(f[i,1], f[i,2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v}
    for(n=1, 10, print(T(n))); \\ Andrew Howroyd, Jul 16 2018

Formula

T(a*b,k) = T(a,(k mod a))*T(b,(k mod b)) if gcd(a,b) = 1.
Sum_{k=1..n-1, gcd(k,n)=1} T(n,k) = A000252(n). - Andrew Howroyd, Jul 16 2018

Extensions

Terms a(24)-a(55) from b-file by Andrew Howroyd, Jul 16 2018

A154346 a(n) = 12*a(n-1) - 28*a(n-2) for n > 1, with a(0)=1, a(1)=12.

Original entry on oeis.org

1, 12, 116, 1056, 9424, 83520, 738368, 6521856, 57587968, 508443648, 4488860672, 39629905920, 349870772224, 3088811900928, 27269361188864, 240745601040384, 2125405099196416, 18763984361226240, 165656469557215232
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009

Keywords

Comments

Binomial transform of A164547, second binomial transform of A164546, third binomial transform of A038761, fourth binomial transform of A164545, fifth binomial transform of A164544, sixth binomial transform of A164640.
Lim_{n -> infinity} a(n)/a(n-1) = 6 + 2*sqrt(2) = 8.8284271247....

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A164547, A164546, A038761, A164545, A164544, A164640.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((6+2*r)^n-(6-2*r)^n)/(4*r): n in [1..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
    
  • Mathematica
    Join[{a=1,b=12},Table[c=12*b-28*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)
    LinearRecurrence[{12,-28},{1,12},20] (* Harvey P. Dale, May 23 2012 *)
    Rest@ CoefficientList[Series[x/(1 - 12 x + 28 x^2), {x, 0, 19}], x] (* Michael De Vlieger, Sep 13 2016 *)
  • PARI
    a(n)=([0,1; -28,12]^(n-1)*[1;12])[1,1] \\ Charles R Greathouse IV, Sep 13 2016
  • Sage
    [lucas_number1(n,12,28) for n in range(1, 20)] # Zerinvary Lajos, Apr 27 2009
    

Formula

a(n) = 12*a(n-1) - 28*a(n-2) for n > 1. - Philippe Deléham, Jan 12 2009
a(n) = ( (6 + 2*sqrt(2))^n - (6 - 2*sqrt(2))^n )/(4*sqrt(2)).
G.f.: x/(1 - 12*x + 28*x^2). - Klaus Brockhaus, Jan 12 2009, corrected Oct 08 2009
E.g.f.: (1/(2*sqrt(2)))*exp(6*x)*sinh(2*sqrt(2)*x). - G. C. Greubel, Sep 13 2016
a(n) =2^(n-1)*A081179(n). - R. J. Mathar, Feb 04 2021

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009
Edited by Klaus Brockhaus, Oct 08 2009
Offset corrected. - R. J. Mathar, Jun 19 2021
Showing 1-6 of 6 results.