A164544
a(n) = 2*a(n-1) + 7*a(n-2) for n > 1; a(0) = 1, a(1) = 7.
Original entry on oeis.org
1, 7, 21, 91, 329, 1295, 4893, 18851, 71953, 275863, 1055397, 4041835, 15471449, 59235743, 226771629, 868193459, 3323788321, 12724930855, 48716379957, 186507275899, 714029211497, 2733609354287, 10465423189053, 40066111858115
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(1+2*r)^n+(2-3*r)*(1-2*r)^n)/4: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
-
LinearRecurrence[{2,7},{1,7},40] (* Harvey P. Dale, Jul 15 2012 *)
-
[(i*sqrt(7))^(n-1)*(i*sqrt(7)*chebyshev_U(n, -i/sqrt(7)) + 5*chebyshev_U(n-1, -i/sqrt(7))) for n in (0..40)] # G. C. Greubel, Jul 18 2021
A164545
a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 8.
Original entry on oeis.org
1, 8, 36, 176, 848, 4096, 19776, 95488, 461056, 2226176, 10748928, 51900416, 250597376, 1209991168, 5842354176, 28209381376, 136206942208, 657665294336, 3175488946176, 15332616962048, 74032423632896, 357460162379776
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(2+2*r)^n+(2-3*r)*(2-2*r)^n)/4: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
-
LinearRecurrence[{4,4},{1,8},30] (* Harvey P. Dale, Dec 25 2011 *)
-
[(2*i)^n*(chebyshev_U(n, -i) - 2*i*chebyshev_U(n-1, -i)) for n in (0..30)] # G. C. Greubel, Jul 17 2021
A164546
a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
Original entry on oeis.org
1, 10, 72, 496, 3392, 23168, 158208, 1080320, 7376896, 50372608, 343965696, 2348744704, 16038232064, 109515898880, 747821334528, 5106443485184, 34868977205248, 238100269760512, 1625850340442112, 11102000565452800
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(4+2*r)^n+(2-3*r)*(4-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
-
LinearRecurrence[{8,-8}, {1,10}, 30] (* G. C. Greubel, Jul 17 2021 *)
-
[2*(2*sqrt(2))^(n-1)*(sqrt(2)*chebyshev_U(n, sqrt(2)) + chebyshev_U(n-1, sqrt(2))) for n in (0..30)] # G. C. Greubel, Jul 17 2021
A164547
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 11.
Original entry on oeis.org
1, 11, 93, 743, 5849, 45859, 359157, 2811967, 22014001, 172336571, 1349127693, 10561555223, 82680381449, 647257375699, 5067007272357, 39666697336687, 310527849736801, 2430944642644331, 19030472980917693, 148978670884223303
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+3*r)*(5+2*r)^n+(2-3*r)*(5-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 19 2009
-
LinearRecurrence[{10,-17},{1,11},30] (* Harvey P. Dale, Jun 04 2012 *)
-
[(17)^((n-1)/2)*(sqrt(17)*chebyshev_U(n, 5/sqrt(17)) + chebyshev_U(n-1, 5/sqrt(17))) for n in (0..30)] # G. C. Greubel, Jul 17 2021
A181107
Triangle read by rows: T(n,k) is the number of 2 X 2 matrices over Z(n) having determinant congruent to k mod n, 1 <= n, 0 <= k <= n-1.
Original entry on oeis.org
1, 10, 6, 33, 24, 24, 88, 48, 72, 48, 145, 120, 120, 120, 120, 330, 144, 240, 198, 240, 144, 385, 336, 336, 336, 336, 336, 336, 736, 384, 576, 384, 672, 384, 576, 384, 945, 648, 648, 864, 648, 648, 864, 648, 648, 1450, 720, 1200, 720, 1200, 870, 1200, 720, 1200, 720
Offset: 1
From _Andrew Howroyd_, Jul 16 2018: (Start)
Triangle begins:
1;
10, 6;
33, 24, 24;
88, 48, 72, 48;
145, 120, 120, 120, 120;
330, 144, 240, 198, 240, 144;
385, 336, 336, 336, 336, 336, 336;
736, 384, 576, 384, 672, 384, 576, 384;
945, 648, 648, 864, 648, 648, 864, 648, 648;
... (End)
- Erdos Pal, Rows n=1..100 of triangle, flattened
- Richard P. Brent and Brendan D. McKay, Determinants and ranks of random matrices over Z_m, Discrete Mathematics 66 (1987) pp. 35-49.
- A. K. Gupta, Generalized hidden hexagon squares, The Fibonacci Quarterly, Vol 12, Number 1, Feb.1974, pp. 45-46.
- S. Hitotumatu, D. Sato, Star of David theorem (I), The Fibonacci Quarterly, Vol 13, Number 1, Feb.1975, p. 70.
-
(* computing T(p^e,k) ; p=prime, 1<=e, 0<=k
-
S(p,e)={my(u=vector(p^e)); my(t=(p-1)*p^(e-1)); u[1] = p^e + e*t; for(j=1, p^e-1, u[j+1] = t*(1+valuation(j, p))); vector(#u, k, sum(j=0, #u-1, u[j + 1]*u[(j+k-1) % #u + 1]))}
T(n)={my(f=factor(n), v=vector(n,i,1)); for(i=1, #f~, my(r=S(f[i,1], f[i,2])); for(j=0, #v-1, v[j + 1] *= r[j % #r + 1])); v}
for(n=1, 10, print(T(n))); \\ Andrew Howroyd, Jul 16 2018
A154346
a(n) = 12*a(n-1) - 28*a(n-2) for n > 1, with a(0)=1, a(1)=12.
Original entry on oeis.org
1, 12, 116, 1056, 9424, 83520, 738368, 6521856, 57587968, 508443648, 4488860672, 39629905920, 349870772224, 3088811900928, 27269361188864, 240745601040384, 2125405099196416, 18763984361226240, 165656469557215232
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((6+2*r)^n-(6-2*r)^n)/(4*r): n in [1..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
-
Join[{a=1,b=12},Table[c=12*b-28*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011 *)
LinearRecurrence[{12,-28},{1,12},20] (* Harvey P. Dale, May 23 2012 *)
Rest@ CoefficientList[Series[x/(1 - 12 x + 28 x^2), {x, 0, 19}], x] (* Michael De Vlieger, Sep 13 2016 *)
-
a(n)=([0,1; -28,12]^(n-1)*[1;12])[1,1] \\ Charles R Greathouse IV, Sep 13 2016
-
[lucas_number1(n,12,28) for n in range(1, 20)] # Zerinvary Lajos, Apr 27 2009
Showing 1-6 of 6 results.
Comments