A370522
a(n) is the least n-digit number whose square has the maximum sum of digits (A348300(n)).
Original entry on oeis.org
7, 83, 836, 8937, 94863, 987917, 9893887, 99477133, 994927133, 9380293167, 99497231067, 926174913167, 9892825177313, 89324067192437, 943291047332683, 9949874270443813, 83066231922477313, 707106074079263583, 9429681807356492126, 94180040294109027313, 888142995231510436417, 8882505274864168010583
Offset: 1
a(3) = 836 because among all 3-digit numbers, 836 is the smallest whose square 698896 has the maximum sum of digits, 46 = A348300(3).
-
A348300={13,31,46,63,81,97,112,130,148,162,180};
A370522[n_]:=Do[If[Total@IntegerDigits[k^2]==A348300[[n]],Return[k];],{k,10^(n-1),10^n-1}];
Table[A370522[n],{n,8}]
-
def A370522(n):
A348300=[0,13,31,46,63,81,97,112,130,148,162,180]
for k in range(10**(n-1), 10**n):
if sum(int(d) for d in str(k**2))==A348300[n]:
return(k)
print([A370522(n) for n in range(1,9)])
A360803
Numbers whose squares have a digit average of 8 or more.
Original entry on oeis.org
3, 313, 94863, 298327, 987917, 3162083, 9893887, 29983327, 99477133, 99483667, 197483417, 282753937, 314623583, 315432874, 706399164, 773303937, 894303633, 947047833, 948675387, 989938887, 994927133, 994987437, 998398167, 2428989417, 2754991833, 2983284917, 2999833327
Offset: 1
94863 is in the sequence, because 94863^2 = 8998988769, which has a digit average of 8.1 >= 8.
-
isok(k) = my(d=digits(k^2)); vecsum(d)/#d >= 8; \\ Michel Marcus, Feb 22 2023
-
def ok(n): d = list(map(int, str(n**2))); return sum(d) >= 8*len(d)
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Feb 22 2023
A164842
Numbers n with property that average digit of n^2 is less than 1.
Original entry on oeis.org
101, 1001, 10001, 50001, 100001, 100002, 100005, 100011, 100101, 100549, 101001, 110001, 114499, 200001, 316261, 375501, 500001, 1000001, 1000002, 1000005, 1000011, 1000101, 1001001, 1010001, 1100001, 2000001, 5000001, 5000002
Offset: 1
A379602
a(n) is the least n-digit number whose square contains only digits greater than 5.
Original entry on oeis.org
3, 26, 264, 3114, 25824, 260167, 2639867, 25845676, 260147437, 2582245083, 25843178924, 258241744863, 2582010592114, 25825761924437, 258218875510676, 2581990857627114, 25820083014911063, 258199298347206526, 2581988959445543367, 25819892911624938937, 258198891881411585714
Offset: 1
a(3) = 264 because among all 3-digit numbers, 264 is the smallest whose square 69696 contains only digits greater than 5.
-
f[m_] := For[k = Ceiling@Sqrt[100^m/15], k < 10^m - 1, k++, If[Min@IntegerDigits[k^2] > 5, Return[k];]]; Table[f[m], {m, 10}]
A379603
a(n) is the largest n-digit number whose square contains only digits greater than 5.
Original entry on oeis.org
3, 83, 937, 9833, 98336, 998333, 9994833, 99983333, 999939437, 9999833333, 99998333336, 999998333333, 9999983333336, 99999983333333, 999999833333336, 9999999833333333, 99999998333333336, 999999998333333333, 9999999983333333336, 99999999983333333333, 999999999833333333336
Offset: 1
a(3) = 937 because among all 3-digit numbers, 937 is the largest whose square 877969 contains only digits greater than 5.
-
f[m_] := For[k = 10^m - 1, k > 10^(m - 1), k--, If[Min@IntegerDigits[k^2] > 5, Return[k];]];
Table[f[m], {m, 10}]
A362264
Numbers > 9 with increasingly large digit average of their square, in base 10.
Original entry on oeis.org
10, 11, 12, 13, 17, 63, 83, 313, 94863, 3162083, 994927133
Offset: 0
The respective digit averages are:
n | a(n) | a(n)^2 | #digits | sum(digits) | digit average
----+-----------+------------------+---------+-------------+------------------
- | 4 | 16 | 2 | 7 | 7/2 = 3.5
- | 6 | 36 | 2 | 9 | 9/2 = 4.5
- | 7 | 49 | 2 | 13 | 13/2 = 6.5
0 | 10 | 100 | 3 | 1 | 1/3 = 0.333...
1 | 11 | 121 | 3 | 4 | 4/3 = 1.333...
2 | 12 | 144 | 3 | 9 | 3 = 3.0
3 | 13 | 169 | 3 | 16 | 16/3 = 3.333...
4 | 17 | 289 | 3 | 19 | 19/3 = 6.333...
5 | 63 | 3969 | 4 | 27 | 27/4 = 6.75
6 | 83 | 6889 | 4 | 31 | 31/4 = 7.75
7 | 313 | 97969 | 5 | 40 | 8 = 8.0
8 | 94863 | 8998988769 | 10 | 81 | 81/10 = 8.1
9 | 3162083 | 9998768898889 | 13 | 106 | 106/13 = 8.15...
10 | 994927133 |989879999979599689| 18 | 148 | 74/9 = 8.222...
Showing 1-6 of 6 results.
Comments