A202989
E.g.f: Sum_{n>=0} 3^(n^2) * exp(3^n*x) * x^n/n!.
Original entry on oeis.org
1, 4, 100, 21952, 45212176, 864866612224, 151334226289000000, 240066313618039143841792, 3437872835498096514323500400896, 443629285048033016198674962874808664064, 515464807019389919369209932597753906250000000000
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 100*x^2/2! + 21952*x^3/3! + 45212176*x^4/4! +..
By the series identity, the e.g.f.:
A(x) = exp(x) + 3*exp(3*x)*x + 3^4*exp(3^2*x)*x^2/2! + 3^9*exp(3^3*x)*x^3/3! +...
expands into:
A(x) = 1 + 4*x + 10^2*x^2/2! + 28^3*x^3/3! + 82^4*x^4/4! + 244^5*x^5/5! +...+ (3^n+1)^n*x^n/n! +...
-
{a(n, q=3, m=1, b=1)=(m*q^n + b)^n}
-
{a(n, q=3, m=1, b=1)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}
-
{a(n, q=3, m=1, b=1)=polcoeff(sum(k=0,n,m^k*q^(k^2)*x^k/(1-b*q^k*x +x*O(x^n))^(k+1)),n)}
A180602
a(n) = (2^(n+1) - 1)^n.
Original entry on oeis.org
1, 3, 49, 3375, 923521, 992436543, 4195872914689, 70110209207109375, 4649081944211090042881, 1227102111503512992112190463, 1291749870339606615892191271170049, 5429914198235566686555216227881787109375
Offset: 0
E.g.f: A(x) = 1 + 3*x + 7^2*x^2/2! + 15^3*x^3/3! + 31^4*x^4/4! +...
A(x) = exp(-x) + 2^2*exp(-2*x)*x + 2^6*exp(-4*x)*x^2/2! + 2^12*exp(-8*x)*x^3/3! +...
-
[(2^(n+1)-1)^n : n in [0..11]]; // Arkadiusz Wesolowski, Aug 26 2013
-
A180602:=n->(2^(n+1) - 1)^n: seq(A180602(n), n=0..10); # Wesley Ivan Hurt, Oct 09 2014
-
Table[(2^(n + 1) - 1)^n, {n, 0, 10}] (* Wesley Ivan Hurt, Oct 09 2014 *)
-
{a(n)=n!*polcoeff(sum(k=0, n, 2^(k^2+k)*exp(-2^k*x+x*O(x^n))*x^k/k!), n)}
-
def A180602(n): return ((1<Chai Wah Wu, Sep 13 2024
A251657
a(n) = (2^n + 3)^n.
Original entry on oeis.org
1, 5, 49, 1331, 130321, 52521875, 90458382169, 662062621900811, 20248745068443234721, 2548385124666493326171875, 1305282261160894865367626964649, 2701607566979638625212777041914285051, 22497539334127167666989016452232087989410801, 751859086636251929847496735809485838154930419921875
Offset: 0
E.g.f.: A(x) = 4^0 + 5^1*x + 7^2*x^2/2! + 11^3*x^3/3! + 19^4*x^4/4! + 35^5*x^5/5! + 67^6*x^6/6! + 131^7*x^7/7! +...+ (2^n+3)^n*x^n/n! +...
such that
A(x) = exp(3*x) + 2*exp(3*2*x) + 2^4*exp(3*4*x)*x^2/2! + 2^9*exp(3*8*x)*x^3/3! + 2^16*exp(3*16*x)*x^4/4! +...+ 2^(n^2)*exp(3*2^n*x)*x^n/n! +...
-
Table[(2^n+3)^n,{n,0,20}] (* Harvey P. Dale, Mar 16 2016 *)
-
{a(n,q=2,m=1,b=3) =( m*q^n + b)^n}
for(n=0,15,print1(a(n,q=2,m=1,b=3),", "))
-
{a(n,q=2,m=1,b=3) = sum(k=0,n, binomial(n,k) * b^k * m^(n-k) * (q^n)^(n-k))}
for(n=0,15,print1(a(n,q=2,m=1,b=3),", "))
-
{a(n,q=2,m=1,b=3) = n!*polcoeff(sum(k=0, n, m^k * q^(k^2) * exp(b*q^k*x +x*O(x^n)) * x^k/k!), n)}
for(n=0,15,print1(a(n,q=2,m=1,b=3),", "))
-
{a(n,q=2,m=1,b=3) = polcoeff(sum(k=0, n, m^k * q^(k^2) * x^k / (1 - b*q^k*x +x*O(x^n))^(k+1) ), n)}
for(n=0,15,print1(a(n,q=2,m=1,b=3),", "))
A264871
Array read by antidiagonals: T(n,m) = (1+2^n)^m; n,m>=0.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 9, 1, 32, 81, 125, 81, 17, 1, 64, 243, 625, 729, 289, 33, 1, 128, 729, 3125, 6561, 4913, 1089, 65, 1, 256, 2187, 15625, 59049, 83521, 35937, 4225, 129, 1, 512, 6561, 78125, 531441, 1419857, 1185921, 274625, 16641, 257
Offset: 0
1, 2, 4, 8, 16, 32,
1, 3, 9, 27, 81, 243,
1, 5, 25, 125, 625, 3125,
1, 9, 81, 729, 6561, 59049,
1, 17, 289, 4913, 83521, 1419857,
1, 33, 1089, 35937, 1185921,39135393,
-
Reverse /@ Table[(1 + 2^(n - m))^m, {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Nov 27 2015 *)
A337851
a(n) = (2^n + 2)^n.
Original entry on oeis.org
1, 4, 36, 1000, 104976, 45435424, 82653950016, 627485170000000, 19631688197463081216, 2504194578379511247798784, 1292628144912333835229805413376, 2687153475176994340820312500000000000, 22431765115399782718874449007331506546282496
Offset: 0
O.g.f.: A(x) = 1 + 4*x + 36*x^2 + 1000*x^3 + 104976*x^4 + 45435424*x^5 + 82653950016*x^6 + 627485170000000*x^7 + 19631688197463081216*x^8 + ...
where
A(x) = 1/(1 - 2*x) + 2*x/(1 - 2^2*x)^2 + 2^4*x^2/(1 - 2^3*x)^3 + 2^9*x^3/(1 - 2^4*x)^4 + 2^16*x^4/(1 - 2^5*x)^5 + 2^25*x^5/(1 - 2^6*x)^6 + ...
-
{a(n,q,m,b) = (m*q^n + b)^n}
for(n=0,15, print1(a(n,q=2,m=1,b=2),", "))
-
/* E.g.f. formula: */
{a(n,q,m,b) = polcoeff( sum(k=0,n, m^k * q^(k^2) * x^k / (1 - b*q^k*x +x*O(x^n))^(k+1)), n)}
for(n=0,15, print1(a(n,q=2,m=1,b=2),", "))
-
/* E.g.f. formula: */
{a(n,q,m,b) = n! * polcoeff( sum(k=0,n, m^k * q^(k^2) * exp(b*q^k*x +x*O(x^n)) * x^k/k!), n)}
for(n=0,15, print1(a(n,q=2,m=1,b=2),", "))
A202990
E.g.f: Sum_{n>=0} 3^n * 2^(n^2) * exp(-2*2^n*x) * x^n/n!.
Original entry on oeis.org
1, 4, 100, 10648, 4477456, 7339040224, 47045881000000, 1186980379913527168, 118530511097526559703296, 47035767668340696232372862464, 74367598058372171073462490000000000, 469253945833810205185008441288962454059008
Offset: 0
E.g.f.: A(x) = 1 + 4*x + 100*x^2/2! + 10648*x^3/3! + 4477456*x^4/4! +..
By the series identity, the e.g.f.:
A(x) = exp(-2*x) + 3*2*exp(-2*2*x)*x + 3^2*2^4*exp(-2*2^2*x)*x^2/2! + 3^3*2^9*exp(-2*2^3*x)*x^3/3! +...
expands into:
A(x) = 1 + 4*x + 10^2*x^2/2! + 22^3*x^3/3! + 46^4*x^4/4! + 94^5*x^5/5! +...+ (3*2^n-2)^n*x^n/n! +...
-
Table[(3*2^n-2)^n,{n,0,12}] (* Harvey P. Dale, Jul 16 2023 *)
-
{a(n, q=2, m=3, b=-2)=(m*q^n + b)^n}
-
{a(n, q=2, m=3, b=-2)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}
-
{a(n, q=2, m=3, b=-2)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)}
A202991
E.g.f: Sum_{n>=0} 3^(n^2) * exp(-2*3^n*x) * x^n/n!.
Original entry on oeis.org
1, 1, 49, 15625, 38950081, 812990017201, 147640825624179889, 237771659632917369765625, 3425319186561140076700951192321, 443021141828981570872668681812345111521, 515202988063835984513918825523304657054713360049
Offset: 0
E.g.f.: A(x) = 1 + x + 49*x^2/2! + 15625*x^3/3! + 38950081*x^4/4! +...
By the series identity, the g.f.:
A(x) = exp(-2*x) + 3*exp(-2*3*x)*x + 3^4*exp(-2*3^2*x)*x^2/2! + 3^9*exp(-2*3^3*x)*x^3/3! + 3^16*exp(-2*3^4*x)*x^4/4! +...
expands into:
A(x) = 1 + x + 7^2*x^2/2! + 25^3*x^3/3! + 79^4*x^4/4! + 241^5*x^5/5! +...+ (3^n-2)^n*x^n/n! +...
-
{a(n, q=3, m=1, b=-2)=(m*q^n + b)^n}
-
{a(n, q=3, m=1, b=-2)=n!*polcoeff(sum(k=0, n, m^k*q^(k^2)*exp(b*q^k*x+x*O(x^n))*x^k/k!), n)}
-
{a(n, q=3, m=1, b=-2)=polcoeff(sum(k=0, n, m^k*q^(k^2)*x^k/(1-b*q^k*x+x*O(x^n))^(k+1)), n)}
Showing 1-7 of 7 results.
Comments