cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A085745 Numbers m such that 2^m + m is a semiprime.

Original entry on oeis.org

2, 11, 23, 34, 59, 69, 87, 95, 119, 123, 129, 171, 197, 239, 341, 425, 455, 471, 515, 519, 635, 765, 959, 1115, 1181, 1210
Offset: 1

Views

Author

Jason Earls, Jul 21 2003

Keywords

Comments

a(27) >= 1239. If 1239 is not a term then a(27) = 1275. - Amiram Eldar, Oct 26 2024

Crossrefs

Sequences A165767, A165768, A165769 are the analog for 2^n-n. - M. F. Hasler, Oct 08 2009

Programs

  • Mathematica
    Select[Range[1300],PrimeOmega[2^#+#]==2&] (* Harvey P. Dale, Dec 18 2014 *)

Formula

a(n) = 2*k <=> A089535(n) is even <=> A089536(n) = 2 <=> A089537(n) = 4^k/2 + k, and for any prime of this form, there is a term a(n) = 2*k in this sequence. - M. F. Hasler, Oct 08 2009

Extensions

More terms from Ray Chandler, Nov 08 2003
a(15) from Donovan Johnson, Mar 06 2008
a(16)-a(26) from Sean A. Irvine, Oct 27 2009
Offset changed to 1 by Jinyuan Wang, Jul 30 2021

A165767 Numbers m such that 2^m-m is a semiprime.

Original entry on oeis.org

6, 7, 15, 18, 25, 31, 33, 39, 42, 45, 49, 62, 73, 85, 93, 103, 119, 171, 187, 193, 199, 201, 269, 367, 379, 405, 413, 449, 459, 481, 489, 549, 577, 601, 631, 669, 787, 795, 1399
Offset: 1

Views

Author

M. F. Hasler, Oct 08 2009, Oct 29 2009

Keywords

Comments

The largest resp. smallest prime factor of 2^a(n)-a(n) is listed in A165768 resp. A165769.
a(40) >= 1489. - Max Alekseyev, Aug 05 2019
1501, 1587, 1667, 2250, 3393, 5845, 9967, 16147 are terms of this sequence. - Chai Wah Wu, Oct 18 2019

Examples

			199 is in this sequence because 2^199-199 = 17377902756647509 * 46235097144973199564251065756966919577339221 and these two factors are prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeOmega[2^# - #]==2 &] (* Vincenzo Librandi, Dec 19 2014 *)
  • PARI
    for( i=1,200, bigomega(2^i-i)==2 & print1(i","))

Formula

2^a(n)-a(n) = A165768(n)*A165769(n) is a semiprime.
a(n)=2k <=> 4^k/2-k is prime <=> A165768(n)=2.

Extensions

More terms from Sean A. Irvine, Oct 22 2009
a(36)-a(37) from Max Alekseyev, Jun 06 2013
a(38) from Sean A. Irvine, Mar 17 2015
a(39) from Sean A. Irvine, Jun 29 2015

A165769 Largest prime factor of the semiprime 2^A165767(n)-A165767(n).

Original entry on oeis.org

29, 11, 4679, 131063, 123817, 318949, 209510599, 49977801259, 2199023255531, 9334079, 7250118529, 2305843009213693921, 17457916757373919459, 27748320404471, 717308900550128276543, 2028240960365167042394725128581, 221537999297485978817301176713390723
Offset: 1

Views

Author

M. F. Hasler, Oct 08 2009

Keywords

Comments

A165768(n)=2 <=> A165767(n)=2k for some k <=> a(n)=4^k/2-k is prime. This is the case for k=3,9,21,31,1125,...

Examples

			46235097144973199564251065756966919577339221 is in this sequence because it is the largest prime factor of the semiprime 2^199-199.
		

Formula

a(n)=(2^A165767(n)-A165767(n))/A165768(n).
Showing 1-3 of 3 results.