A055487
Least m such that phi(m) = n!.
Original entry on oeis.org
1, 3, 7, 35, 143, 779, 5183, 40723, 364087, 3632617, 39916801, 479045521, 6227180929, 87178882081, 1307676655073, 20922799053799, 355687465815361, 6402373865831809, 121645101106397521, 2432902011297772771, 51090942186005065121, 1124000727844660550281, 25852016739206547966721, 620448401734814833377121, 15511210043338862873694721, 403291461126645799820077057, 10888869450418352160768000001, 304888344611714964835479763201
Offset: 1
- R. K. Guy, (1981): Unsolved problems In Number Theory, Springer - page 53.
- Tattersall, J., "Elementary Number Theory in Nine Chapters", Cambridge University Press, 2001, p. 162.
-
Array[Block[{k = 1}, While[EulerPhi[k] != #, k++]; k] &[#!] &, 10] (* Michael De Vlieger, Jul 12 2018 *)
A055506
Number of solutions to the equation phi(x) = n!.
Original entry on oeis.org
2, 3, 4, 10, 17, 49, 93, 359, 1138, 3802, 12124, 52844, 182752, 696647, 2852886, 16423633, 75301815, 367900714, 1531612895, 8389371542, 40423852287, 213232272280, 1295095864798, 7991762413764, 42259876674716, 252869570952706, 1378634826630301, 8749244047999717
Offset: 1
n = 5, phi(x) = 5! = 120 holds for the following 17 numbers: { 143, 155, 175, 183, 225, 231, 244, 248, 286, 308, 310, 350, 366, 372, 396, 450, 462 }.
From _M. F. Hasler_, Oct 04 2009: (Start)
The table A165773 looks as follows:
1,2, (a(1)=2 numbers for which phi(n) = 1! = 1)
3,4,6, (a(2)=3 numbers for which phi(n) = 2! = 2)
7,9,14,18, (a(3)=4 numbers for which phi(n) = 3! = 6)
35,39,45,52,56,70,72,78,84,90, (a(4)=10 numbers for which phi(n) = 4! = 24)
... (End)
A165773
Numbers n for which phi(n) = m! for some integer m, where phi = A000010.
Original entry on oeis.org
1, 2, 3, 4, 6, 7, 9, 14, 18, 35, 39, 45, 52, 56, 70, 72, 78, 84, 90, 143, 155, 175, 183, 225, 231, 244, 248, 286, 308, 310, 350, 366, 372, 396, 450, 462, 779, 793, 803, 905, 925, 1001, 1045, 1085, 1107, 1209, 1221, 1281, 1287, 1395, 1425, 1448, 1485, 1558, 1575
Offset: 1
The table looks as follows:
1,2, /* A055506(1)=2 numbers for which phi(n) = 1! = 1 */
3,4,6, /* A055506(2)=3 numbers for which phi(n) = 2! = 2 */
7,9,14,18, /* A055506(3)=4 numbers for which phi(n) = 3! = 6 */
35,39,45,52,56,70,72,78,84,90, /* A055506(4)=10 numbers for which phi(n) = 4! = 24 */
143,155,175,183,225,231,244,248,286,308,310,350,366,372,396,450,462, /* A055506(5)=17 numbers for which phi(n) = 5! = 120 */ ...
-
for(m=1,8, for( n=f=m!,f*(m+1), eulerphi(n)==f & print1(n","));print())
A358489
Numbers k such that phi(k) = 13! where phi is the Euler totient function (A000010).
Original entry on oeis.org
6227180929, 6227182993, 6227186509, 6227199361, 6227220691, 6227229637, 6227245393, 6227246107, 6227260969, 6227267713, 6227268799, 6227279341, 6227280491, 6227288461, 6227311397, 6227314111, 6227327761, 6227351861, 6227355097, 6227376241, 6227447761, 6227454979
Offset: 1
Showing 1-4 of 4 results.
Comments