cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A049541 Decimal expansion of 1/Pi.

Original entry on oeis.org

3, 1, 8, 3, 0, 9, 8, 8, 6, 1, 8, 3, 7, 9, 0, 6, 7, 1, 5, 3, 7, 7, 6, 7, 5, 2, 6, 7, 4, 5, 0, 2, 8, 7, 2, 4, 0, 6, 8, 9, 1, 9, 2, 9, 1, 4, 8, 0, 9, 1, 2, 8, 9, 7, 4, 9, 5, 3, 3, 4, 6, 8, 8, 1, 1, 7, 7, 9, 3, 5, 9, 5, 2, 6, 8, 4, 5, 3, 0, 7, 0, 1, 8, 0, 2, 2, 7, 6, 0, 5, 5, 3, 2, 5, 0, 6, 1, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

The ratio of the volume of a regular octahedron to the volume of the circumscribed sphere (which has circumradius a*sqrt(2)/2 = a*A010503, where a is the octahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A165952, A165953 and A165954. - Rick L. Shepherd, Oct 01 2009
Corresponds to a gauge point marked "M" on slide rule calculating devices in the 20th century. The Pickworth reference notes its use in calculating the area of the curved surface of a cylinder. - Peter Munn, Aug 14 2020

Examples

			0.3183098861837906715377675267450287240689192914809128974953...
		

References

  • J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Baasel, p. 245. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
  • C. N. Pickworth, The Slide Rule, 24th Ed., Pitman, London, 1945, p. 53, Gauge Points.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 27.

Crossrefs

Programs

Formula

Equals (1/(12-16*A002162))*Sum_{n>=0} A002894(n)*H(n)/(A001025(n) * A016754(n-1)), where H(n) denotes the n-th harmonic number. - John M. Campbell, Aug 28 2016
1/Pi = Sum_{m>=0} binomial(2*m, m)^3 * (42*m+5)/(2^(12*m+4)), Ramanujan, from the J.-P. Delahaye reference. - Wolfdieter Lang, Sep 18 2018; corrected by Bernard Schott, Mar 26 2020
1/Pi = 12*Sum_{n >= 0} (-1)^n*((6*n)!/(n!^3*(3*n)!))*(13591409 + 545140134*n)/640320^(3*n + 3/2) [Chudnovsky]. - Sanjar Abrarov, Mar 31 2020
1/Pi = (sqrt(8)/9801) * Sum_{n >= 0} ((4*n)!/((n!)^4)) * (26390*n + 1103)/(396^(4*n)) [Ramanujan, 1914]. - Bernard Schott, Mar 26 2020
Equal Sum_{k>=2} tan(Pi/2^k)/2^k. - Amiram Eldar, Aug 05 2020
Floor((3/8)*Sum_{n>=1} sigma[3](n)*n/exp(Pi*n/(10^((1/5)*k+(1/5))))) mod 10, will give the k-th digit of 1/Pi. - Simon Plouffe, Dec 19 2023

A063723 Number of vertices in the Platonic solids (in the order tetrahedron, cube, octahedron, dodecahedron, icosahedron).

Original entry on oeis.org

4, 8, 6, 20, 12
Offset: 1

Views

Author

Henry Bottomley, Aug 14 2001

Keywords

Comments

The preferred order for these five numbers is 4, 6, 8, 12, 20 (tetrahedron, octahedron, cube, icosahedron, dodecahedron), as in A053016. - N. J. A. Sloane, Nov 05 2020
Also number of faces of Platonic solids ordered by increasing ratios of volumes to their respective circumscribed spheres. See cross-references for actual ratios. - Rick L. Shepherd, Oct 04 2009
Also the expected lengths of nontrivial random walks along the edges of a Platonic solid from one vertex back to itself. - Jens Voß, Jan 02 2014

Examples

			a(2) = 8 since a cube has eight vertices.
		

Crossrefs

Cf. A165922 (tetrahedron), A049541 (octahedron), A165952 (cube), A165954 (icosahedron), A165953 (dodecahedron). - Rick L. Shepherd, Oct 04 2009
Cf. A234974. - Jens Voß, Jan 02 2014

Formula

a(n) = A063722(n) - A053016(n) + 2.

A165952 Decimal expansion of 2*sqrt(3)/(3*Pi).

Original entry on oeis.org

3, 6, 7, 5, 5, 2, 5, 9, 6, 9, 4, 7, 8, 6, 1, 3, 6, 6, 3, 4, 0, 8, 8, 4, 3, 3, 2, 2, 0, 8, 6, 4, 6, 2, 9, 4, 2, 6, 4, 9, 2, 4, 3, 2, 0, 2, 4, 4, 4, 2, 7, 1, 0, 1, 8, 6, 6, 2, 4, 4, 0, 1, 3, 5, 2, 7, 3, 5, 3, 5, 3, 5, 6, 4, 6, 1, 7, 9, 8, 6, 3, 2, 2, 6, 9, 2, 0, 0, 1, 9, 2, 1, 5, 4, 4, 7, 2, 5, 9, 4, 7, 1, 7, 9, 8
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a cube to the volume of the circumscribed sphere (which has circumradius a*sqrt(3)/2 = a*A010527, where a is the cube's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165953, and A165954. A063723 shows the order of these by size.

Examples

			0.3675525969478613663408843322086462942649243202444271018662440135273535356...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(2*Sqrt[3])/(3Pi),10,120][[1]] (* Harvey P. Dale, Oct 08 2012 *)
  • PARI
    2*sqrt(3)/(3*Pi)

Formula

2*sqrt(3)/(3*Pi) = 2*A002194/(3*A000796) = 3*A165922 = (2*sqrt(3)/3)*A049541 = 10*A020832*A049541 = 2*A020760*A049541.

A165953 Decimal expansion of (5*sqrt(3) + sqrt(15))/(6*Pi).

Original entry on oeis.org

6, 6, 4, 9, 0, 8, 8, 9, 4, 2, 0, 5, 3, 2, 6, 6, 4, 3, 1, 1, 4, 4, 2, 8, 4, 4, 6, 7, 0, 8, 6, 3, 3, 7, 1, 6, 1, 6, 4, 8, 7, 6, 5, 8, 0, 5, 5, 5, 6, 9, 1, 9, 3, 8, 1, 0, 5, 7, 5, 9, 2, 6, 0, 5, 7, 2, 2, 9, 6, 4, 7, 1, 8, 1, 8, 7, 7, 3, 2, 5, 9, 7, 4, 9, 7, 0, 8, 9, 0, 0, 2, 6, 9, 2, 0, 9, 2, 5, 9, 8, 9, 8, 2, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a regular dodecahedron to the volume of the circumscribed sphere (which has circumradius a*(sqrt(3) + sqrt(15))/4 = a*(A002194 + A010472)/4, where a is the dodecahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165954. A063723 shows the order of these by size.

Examples

			0.6649088942053266431144284467086337161648765805556919381057592605722964718...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(5*Sqrt[3]+Sqrt[15])/(6*Pi),10,120][[1]] (* Harvey P. Dale, Feb 16 2018 *)
  • PARI
    (5*sqrt(3)+sqrt(15))/(6*Pi)

Formula

Equals (5*A002194 + A010472)/(6*A000796).
Equals (5*A002194 + A010472)*A049541/6.
Equals (10*A010527 + A010472)*A049541/6.
Equals (5 + sqrt(5))/(2*Pi*sqrt(3)).
Equals (5 + A002163)*A049541*A020760/2.

A165954 Decimal expansion of sqrt(10 + 2*sqrt(5))/(2*Pi).

Original entry on oeis.org

6, 0, 5, 4, 6, 1, 3, 8, 2, 9, 1, 2, 5, 2, 5, 5, 8, 3, 3, 8, 6, 2, 6, 5, 2, 0, 5, 1, 2, 8, 0, 4, 4, 4, 9, 0, 3, 0, 0, 8, 4, 5, 4, 0, 8, 8, 0, 1, 4, 2, 8, 8, 9, 3, 3, 2, 0, 0, 9, 3, 5, 0, 0, 0, 8, 3, 8, 2, 9, 5, 6, 8, 3, 8, 2, 0, 7, 2, 7, 2, 7, 8, 5, 3, 6, 2, 4, 2, 6, 2, 5, 9, 6, 8, 8, 1, 3, 0, 5, 1, 9, 3, 2, 4, 1
Offset: 0

Views

Author

Rick L. Shepherd, Oct 04 2009

Keywords

Comments

The ratio of the volume of a regular icosahedron to the volume of the circumscribed sphere (with circumradius a*sqrt(10 + 2*sqrt(5))/4 = a*A019881, where a is the icosahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165953. A063723 shows the order of these by size.

Examples

			0.6054613829125255833862652051280444903008454088014288933200935000838295683...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[10+2Sqrt[5]]/(2Pi),10,120][[1]] (* Harvey P. Dale, Aug 27 2013 *)
  • PARI
    sqrt(10+2*sqrt(5))/(2*Pi)

Formula

sqrt(10 + 2*sqrt(5))/(2*Pi) = sqrt(10 + 2*A002163)/(2*A000796) = 2*sin(2*Pi/5)/Pi = 2*sin(A019694)/A000796 = 2*sin(72 deg)/Pi = 2*A019881/A000796 = 2*A019881*A049541 = (2/Pi)*sin(72 deg) = A060294*A019881.
Showing 1-5 of 5 results.