cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A166520 a(n) = (10*n + 11*(-1)^n + 5)/4.

Original entry on oeis.org

1, 9, 6, 14, 11, 19, 16, 24, 21, 29, 26, 34, 31, 39, 36, 44, 41, 49, 46, 54, 51, 59, 56, 64, 61, 69, 66, 74, 71, 79, 76, 84, 81, 89, 86, 94, 91, 99, 96, 104, 101, 109, 106, 114, 111, 119, 116, 124, 121, 129, 126, 134, 131, 139, 136, 144, 141, 149, 146, 154, 151, 159
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

Formula

a(n) = 5*n - a(n-1) for n > 1, with a(1) = 1.
G.f. x*(1+8*x-4*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Mar 08 2011
From G. C. Greubel, May 16 2016: (Start)
E.g.f.: (5*(1 + 2*x)*exp(x) + 11*exp(-x) - 16)/4.
a(n) = a(n-1) + a(n-2) - a(n-3). (End)

A166521 a(n) = (6*n + 7*(-1)^n + 3)/2.

Original entry on oeis.org

1, 11, 7, 17, 13, 23, 19, 29, 25, 35, 31, 41, 37, 47, 43, 53, 49, 59, 55, 65, 61, 71, 67, 77, 73, 83, 79, 89, 85, 95, 91, 101, 97, 107, 103, 113, 109, 119, 115, 125, 121, 131, 127, 137, 133, 143, 139, 149, 145, 155, 151, 161, 157, 167, 163, 173, 169, 179, 175, 185
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

Formula

a(n) = 6*n - a(n-1), for n > 1, with a(1) = 1.
G.f.: x*(1+10*x-5*x^2) / ((1+x)*(1-x)^2). - R. J. Mathar, Mar 08 2011
From G. C. Greubel, May 16 2016: (Start)
E.g.f.: (1/2)*(7*exp(-x) + 3*(1+2*x)*exp(x) -10).
a(n) = a(n-1) + a(n-2) - a(n-3). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/5 + Pi/(2*sqrt(3)). - Amiram Eldar, Feb 24 2023

A166522 a(n) = 7*n - a(n-1), with a(1) = 1.

Original entry on oeis.org

1, 13, 8, 20, 15, 27, 22, 34, 29, 41, 36, 48, 43, 55, 50, 62, 57, 69, 64, 76, 71, 83, 78, 90, 85, 97, 92, 104, 99, 111, 106, 118, 113, 125, 120, 132, 127, 139, 134, 146, 141, 153, 148, 160, 155, 167, 162, 174, 169, 181, 176, 188, 183, 195, 190, 202, 197, 209, 204
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

  • Magma
    A166522:= func< n | ( 7*n -5 +17*((n+1) mod 2) )/2 >;
    [A166522(n): n in [1..100]]; // G. C. Greubel, Aug 03 2024
    
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==7n-a[n-1]},a,{n,60}] (* or *) LinearRecurrence[{1,1,-1},{1,13,8},60] (* Harvey P. Dale, Jun 07 2012 *)
  • SageMath
    def A166522(n): return ( 7*n -5 +17*((n+1)%2) )//2
    [A166522(n) for n in range(1,101)] # G. C. Greubel, Aug 03 2024

Formula

G.f.: x*(1+12*x-6*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Mar 08 2011
a(n) = a(n-1) + a(n-2) - a(n-3), a(1)=1, a(2)=13, a(3)=8. - Harvey P. Dale, Jun 07 2012
E.g.f.: (1/4)*(17*exp(-x) + 7*(1 + 2*x)*exp(x) - 24). - G. C. Greubel, May 16 2016
a(n) = (1/4)*(14*n + 7 + 17*(-1)^n). - G. C. Greubel, Aug 03 2024

A166523 a(n) = 8*n - a(n-1), with n>1, a(1)=1.

Original entry on oeis.org

1, 15, 9, 23, 17, 31, 25, 39, 33, 47, 41, 55, 49, 63, 57, 71, 65, 79, 73, 87, 81, 95, 89, 103, 97, 111, 105, 119, 113, 127, 121, 135, 129, 143, 137, 151, 145, 159, 153, 167, 161, 175, 169, 183, 177, 191, 185, 199, 193, 207, 201, 215, 209, 223, 217, 231, 225, 239, 233
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 8*n-Self(n-1): n in [1..70]]; // Vincenzo Librandi, Sep 13 2013
    
  • Mathematica
    CoefficientList[Series[(1 +14 x -7 x^2)/((1+x) (1-x)^2), {x,0,60}], x] (* Vincenzo Librandi, Sep 13 2013 *)
  • SageMath
    def A166523(n): return 4*n - 3 + 10*((n+1)%2)
    [A166523(n) for n in range(1,101)] # G. C. Greubel, Aug 03 2024

Formula

G.f.: x*(1+14*x-7*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Mar 08 2011
From G. C. Greubel, May 16 2016: (Start)
E.g.f.: 5*exp(-x) + 2*(1 + 2*x)*exp(x) - 7.
a(n) = a(n-1) + a(n-2) - a(n-3). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/7 + (1/8 + 1/(4*sqrt(2)))*Pi. - Amiram Eldar, Feb 24 2023
a(n) = 4*n + 2 + 5*(-1)^n. - G. C. Greubel, Aug 03 2024

A166524 a(n) = 9*n - a(n-1), with n>1, a(1)=1.

Original entry on oeis.org

1, 17, 10, 26, 19, 35, 28, 44, 37, 53, 46, 62, 55, 71, 64, 80, 73, 89, 82, 98, 91, 107, 100, 116, 109, 125, 118, 134, 127, 143, 136, 152, 145, 161, 154, 170, 163, 179, 172, 188, 181, 197, 190, 206, 199, 215, 208, 224, 217, 233, 226, 242, 235, 251, 244, 260, 253
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 9*n-Self(n-1): n in [1..80]]; // Vincenzo Librandi, Sep 13 2013
    
  • Mathematica
    CoefficientList[Series[(1 +16 x -8 x^2)/((1+x) (1-x)^2), {x,0,80}], x] (* Vincenzo Librandi, Sep 13 2013 *)
    LinearRecurrence[{1,1,-1},{1,17,10},60] (* Harvey P. Dale, Dec 24 2014 *)
  • SageMath
    def A166524(n): return (9*n - 7 + 23*((n+1)%2))//2
    [A166524(n) for n in range(1, 101)] # G. C. Greubel, Aug 04 2024

Formula

G.f.: x*(1+16*x-8*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Mar 08 2011
From G. C. Greubel, May 16 2016: (Start)
E.g.f.: (1/4)*(23*exp(-x) + 9*(1 + 2*x)*exp(x) - 32).
a(n) = a(n-1) + a(n-2) - a(n-3). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/8 + cot(Pi/9)*Pi/9. - Amiram Eldar, Feb 24 2023
a(n) = (1/4)*(18*n + 9 + 23*(-1)^n). - G. C. Greubel, Aug 04 2024

A166526 a(n) = 12*n - a(n-1), with n>1, a(1)=1.

Original entry on oeis.org

1, 23, 13, 35, 25, 47, 37, 59, 49, 71, 61, 83, 73, 95, 85, 107, 97, 119, 109, 131, 121, 143, 133, 155, 145, 167, 157, 179, 169, 191, 181, 203, 193, 215, 205, 227, 217, 239, 229, 251, 241, 263, 253, 275, 265, 287, 277, 299, 289, 311, 301, 323, 313, 335, 325, 347
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else 12*n-Self(n-1): n in [1..80]]; // Vincenzo Librandi, Sep 13 2013
    
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==12n-a[n-1]},a[n],{n,60}] (* or *) LinearRecurrence[{1,1,-1},{1,23,13},60] (* Harvey P. Dale, Aug 10 2011 *)
    CoefficientList[Series[(1 + 22 x - 11 x^2) / ((x - 1)^2 (1 + x)), {x, 0, 60}], x] (* Vincenzo Librandi, Sep 13 2013 *)
  • SageMath
    def A166526(n): return 6*n - 5 + 16*((n+1)%2)
    [A166526(n) for n in range(1, 101)] # G. C. Greubel, Aug 04 2024

Formula

From Harvey P. Dale, Aug 10 2011: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3), a(1)=1, a(2)=23, a(3)=13, for n>3.
G.f.: x*(1+22*x-11*x^2)/((x-1)^2*(1+x)). (End)
E.g.f.: 8*exp(-x) + 3*(1 + 2*x)*exp(x) - 11. - G. C. Greubel, May 16 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/11 + (1/6 + 1/(4*sqrt(3)))*Pi. - Amiram Eldar, Feb 24 2023
a(n) = 6*n + 3 + 8*(-1)^n. - G. C. Greubel, Aug 04 2024

A166517 a(n) = (3 + 5*(-1)^n + 6*n)/4.

Original entry on oeis.org

2, 1, 5, 4, 8, 7, 11, 10, 14, 13, 17, 16, 20, 19, 23, 22, 26, 25, 29, 28, 32, 31, 35, 34, 38, 37, 41, 40, 44, 43, 47, 46, 50, 49, 53, 52, 56, 55, 59, 58, 62, 61, 65, 64, 68, 67, 71, 70, 74, 73, 77, 76, 80, 79, 83, 82, 86, 85, 89, 88, 92, 91, 95, 94, 98, 97, 101, 100, 104, 103, 107
Offset: 0

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Comments

A sequence defined by a(1)=1, a(n)=k*n-a(n-1), k a constant parameter, has recurrence a(n)= 3*a(n-1) -3*a(n-2) +a(n-3). Its generating function is x*(1+2*(k-1)*x+(1-k)*x^2)/((1+x)*(1-x)^2). The closed form is a(n) = k*n/2+k/4+(-1)^n*(3*k/4-1). This applies with k=3 to this sequence here, and for example to sequences A165033, and A166519-A166525. - R. J. Mathar, Oct 17 2009
From Paul Curtz, Feb 20 2010: (Start)
Also: A001651, terms swapped by pairs.
a(n) mod 9 defines a period-6 sequence which is a permutation of A141425. (End)

Crossrefs

Programs

  • Magma
    [(3 +5*(-1)^n+6*n)/4: n in [0..80]]; // Vincenzo Librandi, Sep 13 2013
  • Mathematica
    CoefficientList[Series[(2 x^2 - x + 2)/((1 + x) (x - 1)^2), {x, 0, 80}], x] (* Harvey P. Dale, Mar 25 2011 *)
    Table[(3 + 5 (-1)^n + 6 n) / 4, {n, 0, 100}] (* Vincenzo Librandi, Sep 13 2013 *)

Formula

a(n) = 3*n - a(n-1).
From Paul Curtz, Feb 20 2010: (Start)
a(n+1)-a(n) = (-1)^(n+1)*A010685(n).
Second differences: |a(n+2)-2*a(n+1)+a(n)| = A010716(n).
a(2*n) + a(2*n+1) = A016945(n) = 6*n+3.
a(2*n) = A016945(n).
a(2*n+1) = A016777(n). (End)
G.f. ( 2-x+2*x^2 ) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Mar 08 2011
E.g.f.: (1/4)*exp(-x)*(5 + 3*exp(2*x) + 6*x*exp(2*x)). - G. C. Greubel, May 15 2016
Sum_{n>=0} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) (A073010). - Amiram Eldar, Feb 24 2023

Extensions

a(0)=2 added by Paul Curtz, Feb 20 2010

A166539 a(n) = (10*n + 7*(-1)^n + 5)/4.

Original entry on oeis.org

2, 8, 7, 13, 12, 18, 17, 23, 22, 28, 27, 33, 32, 38, 37, 43, 42, 48, 47, 53, 52, 58, 57, 63, 62, 68, 67, 73, 72, 78, 77, 83, 82, 88, 87, 93, 92, 98, 97, 103, 102, 108, 107, 113, 112, 118, 117, 123, 122, 128, 127, 133, 132, 138, 137, 143, 142, 148, 147, 153, 152, 158
Offset: 1

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Crossrefs

Programs

  • Magma
    [5*n/2 + (5+7*(-1)^n)/4: n in [1..70]]; // Vincenzo Librandi, May 15 2013
    
  • Mathematica
    RecurrenceTable[{a[1]==2,a[n]==5n-a[n-1]},a[n],{n,70}] (* or *) LinearRecurrence[{1,1,-1},{2,8,7},70] (* Harvey P. Dale, Jun 29 2011 *)
  • SageMath
    def A166539(n): return (5*n - 1 + 7*((n+1)%2))//2
    [A166539(n) for n in range(1, 101)] # G. C. Greubel, Aug 04 2024

Formula

a(n) = 5*n - a(n-1), n>=2.
From Harvey P. Dale, Jun 29 2011: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3), n>=4.
G.f.: x*(2+3*x*(2-x))/((1-x)^2*(1+x)). (End)
From G. C. Greubel, May 16 2016: (Start)
E.g.f.: (1/4)*(5*(1 + 2*x)*exp(x) + 7*exp(-x) - 12).
a(n) = a(n-1) + a(n-2) - a(n-3). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/3 + sqrt((5-2*sqrt(5))/5)*Pi/5. - Amiram Eldar, Feb 24 2023
a(n) = A166520(n) - (-1)^n. - G. C. Greubel, Aug 04 2024

A339141 a(n) = reverse(10*n - a(n-1)), with n>1, a(1) = 1.

Original entry on oeis.org

1, 91, -16, 65, -51, 111, -14, 49, 14, 68, 24, 69, 16, 421, -172, 233, -36, 612, -224, 424, -412, 236, -6, 642, -293, 355, -58, 833, -345, 546, -632, 259, 17, 323, 72, 882, -215, 595, -502, 209, 102, 813, -383, 328, 221, 932, -264, 447, 34, 664, -451
Offset: 1

Views

Author

Clément Vovard, Nov 25 2020

Keywords

Comments

Note that for x<0, reverse(x) is defined by -1*reverse(-x).
Starting the sequence with other numbers also gives similar-looking graphs.

Examples

			For n = 2, 10*n = 10*2 = 20, 20 - a(n-1) = 20 - 1 = 19, reverse(19) = 91.
For n = 3, 10*n = 10*3 = 30, 30 - a(3-1) = 30 - 91 = -61, reverse(-61) = -16.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, n, (p-> signum(p)* (f->
          parse(cat(f[-i]$i=1..length(f))))(""||(abs(p))))(10*n-a(n-1)))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 06 2021
  • Mathematica
    nmax=51; a[1]=1; a[n_]:=Sign[10n-a[n-1]]IntegerReverse[10n-a[n-1]]; Table[a[n],{n,nmax}] (* Stefano Spezia, Dec 05 2020 *)
  • PARI
    rev(n) = sign(n)*fromdigits(Vecrev(digits(n)));
    a(n) = if (n==1, 1, rev(10*n-a(n-1))); \\ Michel Marcus, Dec 05 2020

Formula

a(n) = reverse(10*n - a(n-1)) where reverse means reverse the order of the digits.
Showing 1-9 of 9 results.