A167558
The second right hand column of triangle A167557.
Original entry on oeis.org
1, 12, 160, 2688, 55296, 1351680, 38338560, 1238630400, 44920995840, 1807409479680, 79906524364800, 3850733459865600, 200907832688640000, 11282983883794022400, 678650586195610828800, 43527244493925384192000
Offset: 2
Equals the second right hand column of triangle
A167557.
-
Table[4^(n-2) (n-2)! (2n-3)!/(2n-4)!,{n,2,20}] (* Harvey P. Dale, Aug 21 2013 *)
Original entry on oeis.org
1, 5, 46, 598, 10056, 207960, 5111856, 145721520, 4728528000, 172134253440, 6948393580800, 308058678385920, 14882061698380800, 778136819786726400, 43783908789625804800, 2638014817853286144000, 169455373956672285081600
Offset: 1
Equals row sums of triangle
A167557.
-
Table[Sum[4^(m - 1) *(m - 1)! * (n + m - 2)!/(2*m - 2)!, {m, 1, n}], {n, 1, 10}] (* G. C. Greubel, Jun 15 2016 *)
A047053
a(n) = 4^n * n!.
Original entry on oeis.org
1, 4, 32, 384, 6144, 122880, 2949120, 82575360, 2642411520, 95126814720, 3805072588800, 167423193907200, 8036313307545600, 417888291992371200, 23401744351572787200, 1404104661094367232000, 89862698310039502848000
Offset: 0
Joe Keane (jgk(AT)jgk.org)
G.f. = 1 + 4*x + 32*x^2 + 384*x^3 + 6144*x^4 + 122880*x^5 + 2949120*x^6 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015), # 15.3.2.
- CombOS - Combinatorial Object Server, Generate colored permutations
- R. Coquereaux and J.-B. Zuber, Maps, immersions and permutations, arXiv preprint arXiv:1507.03163 [math.CO], 2015-2016. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI.
- Sylvie Corteel and Lauren Williams, Tableaux Combinatorics for the Asymmetric Exclusion Process II, arXiv:0810.2916 [math.CO], 2008-2009.
- A. Hardt and J. M. Troyka, Restricted symmetric signed permutations, Pure Mathematics and Applications, Vol. 23 (No. 3, 2012), pp. 179-217.
- A. Hardt and J. M. Troyka, Slides (associated with the Hardt and Troyka reference above).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 492.
- Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, 5 (2002), Article 02.1.7.
- M. D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications, J. Int. Seq. 13 (2010), Article 10.6.7, p. 39.
- Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, 9 (2006), Article 06.1.1.
a(n)=
A051142(n+1, 0) (first column of triangle).
-
[4^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jul 20 2011
-
A047053:= n -> mul(k, k = select(k-> k mod 4 = 0, [$1..4*n])): seq(A047053(n), n = 0.. 16); # Peter Luschny, Jun 23 2011
-
a[n_]:= With[{m=2n}, If[ m<0, 0, m!*SeriesCoefficient[1 +Sqrt[Pi]*x*Exp[x^2]*Erf[x], {x, 0, m}]]]; (* Michael Somos, Jan 03 2015 *)
Table[4^n n!,{n,0,20}] (* Harvey P. Dale, Sep 19 2021 *)
-
a(n)=4^n*n!;
A167546
The ED1 array read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 6, 12, 7, 1, 24, 48, 32, 10, 1, 120, 240, 160, 62, 13, 1, 720, 1440, 960, 384, 102, 16, 1, 5040, 10080, 6720, 2688, 762, 152, 19, 1, 40320, 80640, 53760, 21504, 6144, 1336, 212, 22, 1
Offset: 1
The ED1 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 4, 7, 10, 13, 16, 19, 22, 25, 28
2, 12, 32, 62, 102, 152, 212, 282, 362, 452
6, 48, 160, 384, 762, 1336, 2148, 3240, 4654, 6432
24, 240, 960, 2688, 6144, 12264, 22200, 37320, 59208, 89664
120, 1440, 6720, 21504, 55296, 122880, 245640, 452880, 783144, 1285536
- B. de Smit and H.W. Lenstra, The Mathematical Structure of Escher's Print Gallery, Notices of the AMS, Volume 50, Number 4, pp. 446-457, April 2003.
- Johannes W. Meijer, The four Escher-Droste arrays, jpg image, Mar 08 2013.
- A. Ryabov, P. Chvosta, Tracer dynamics in a single-file system with absorbing boundary, arXiv preprint arXiv:1402.1949 [cond-mat.stat-mech], 2014.
A000142 equals the first column of the array.
A167550 equals the a(n, n+1) diagonal of the array.
A047053 equals the a(n, n) diagonal of the array.
A167558 equals the a(n+1, n) diagonal of the array.
A167551 equals the row sums of the ED1 array read by antidiagonals.
A167552 is a triangle related to the a(n) formulas of rows of the ED1 array.
A167556 is a triangle related to the GF(z) formulas of the rows of the ED1 array.
A167557 is the lower left triangle of the ED1 array.
Cf.
A068424 (the (m-1)!/(m-n-1)! factor),
A007680 (the (2*n-1)*(n-1)! factor).
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n-1+m-1)!/(2*m-2)! od; for m from n+1 to mmax do a(n,m):= (2*n-1)*(n-1)! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n - 1 + m - 1)!/(2*m - 2)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = (2*n - 1)*(n - 1)! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
Showing 1-4 of 4 results.
Comments