cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056550 Numbers k such that Sum_{j=1..k} sigma(j) is divisible by k, where sigma(j) = sum of divisors of j (A000203).

Original entry on oeis.org

1, 2, 8, 11, 17, 63, 180, 259, 818, 2161, 4441, 8305, 11998, 694218, 3447076, 4393603, 57402883, 73459800, 121475393, 2068420025, 5577330586, 13320495021, 35297649260, 138630178659, 988671518737, 1424539472772, 3028785109162, 13702718147734, 21320824383487
Offset: 1

Views

Author

Asher Auel, Jun 06 2000

Keywords

Examples

			a(3) = 8 is in the sequence because A024916(8) / 8 = 56 / 8 = 7 is an integer. [_Jaroslav Krizek_, Dec 07 2009]
		

Crossrefs

Programs

  • Maple
    f := []: for i from 1 to 9000 do if add(sigma(n), n=1..i) mod i = 0 then f := [op(f),i] fi; od; f;
  • Mathematica
    k=10^4;a[1]=1;a[n_]:=a[n]=DivisorSigma[1,n]+a[n-1]; s=a/@Range@k;Select[Range@k,Divisible[s[[#]],#]&] (* Ivan N. Ianakiev, Apr 30 2016 *)
    Module[{nn=44*10^5,ds},ds=Accumulate[DivisorSigma[1,Range[nn]]];Select[ Thread[{ds,Range[nn]}],Divisible[#[[1]],#[[2]]]&]][[All,2]] (* The program generates the first 16 terms of the sequence. To generate more, increase the value of nn. *) (* Harvey P. Dale, Dec 04 2018 *)
  • PARI
    is(n)=sum(k=1,n,n\k*k)%n==0 \\ Charles R Greathouse IV, Feb 14 2013

Formula

Values of k for which A024916(k)/k is an integer.

Extensions

More terms from Jud McCranie, Jul 04 2000
a(19)-a(24) from Donovan Johnson, Dec 29 2008
a(25) from Donovan Johnson, Jun 16 2011
a(26) from Jud McCranie, Dec 17 2024
a(27) from Jud McCranie, Dec 22 2024
a(28) from Jud McCranie, Apr 03 2025
a(29) from Jud McCranie, May 04 2025

A168132 Numbers m = Sum_{k=1..n} sigma(k)/k such that Sum_{k=1..n} sigma(k)/k is an integer for any k.

Original entry on oeis.org

1, 2, 7, 9, 14, 52, 149, 213, 673, 1778, 3653, 6831, 9868, 570972, 2835107, 3613594, 47211979, 60418265, 99909506, 1701207282, 4587170542, 10955668024, 29031152874, 114018751785, 813149731047
Offset: 1

Views

Author

Jaroslav Krizek, Nov 18 2009, Dec 04 2009

Keywords

Comments

Numbers m = A024916(k)/k such that A024916(k)/k is an integer for any k. If a(14) exist must be bigger than 82000.
Corresponding values of k, and Sum_{k=1..n} sigma(k) are given in A056550 and A168133. [Jaroslav Krizek, Nov 21 2009]

Examples

			Number a(3) = 7 is in sequence because A024916(8)/8 = 56/8 = 7 is an integer for k = 8.
		

Extensions

a(14)-a(25) from Donovan Johnson, Jun 16 2011

A218464 Numbers m = (Sum_(j=1..k) tau(j)) with m divisible by k, where tau(j) is the number of divisors of j.

Original entry on oeis.org

1, 8, 10, 45, 168, 176, 188, 605, 2016, 2040, 2082, 6510, 20384, 62433, 62523, 564542, 4928261, 4928703, 4928729, 42018075, 351871865, 1012753620, 1012755546, 2905896480, 2905898228, 192057921660, 1542529159875, 12309661243665, 12309661255437, 34700429419432
Offset: 1

Views

Author

Paolo P. Lava, Mar 26 2013

Keywords

Comments

See A050226 for the values of k. - T. D. Noe, Mar 27 2013

Examples

			10 is in sequence because k=5 divides the sum of tau(1) + tau(2) + tau(3) + tau(4) + tau(5) = 1+2+2+3+2 = 10.
		

Crossrefs

Cf. A050226 (has the values of k).

Programs

  • Maple
    with(numtheory);
    A218464:=proc(q)  local n;  a:=0;
    for n from 1 to q do a:=a+tau(n) if type(a/n,integer) then print(a); fi; od; end:
    A218464 (10^10); # Paolo P. Lava, Mar 26 2013
  • Mathematica
    sm = 0; t = {}; Do[sm = sm + DivisorSigma[0, n]; If[Mod[sm, n] == 0, AppendTo[t, sm]], {n, 1000}]; t (* T. D. Noe, Mar 27 2013 *)

Extensions

a(22)-a(30) from Giovanni Resta, Mar 28 2013
Showing 1-3 of 3 results.