cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A168147 Primes of the form 10*n^3 + 1.

Original entry on oeis.org

11, 271, 641, 2161, 33751, 40961, 58321, 138241, 196831, 270001, 297911, 466561, 506531, 795071, 1326511, 1406081, 1851931, 2160001, 3890171, 4218751, 5314411, 5513681, 6585031, 7290001, 8043571, 11910161, 12597121, 12950291, 14815441
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 19 2009

Keywords

Comments

(1) These primes all with end digit 1=1^3 are concatenations of two CUBIC numbers: "n^3 1".
(2) It is conjectured that the sequence is infinite.
(3) It is an open problem if 3 consecutive naturals n exist which give such a prime.
No three such integers exist, as every n = 2 (mod 3) yields 10n^3 + 1 = 0 (mod 3). - Charles R Greathouse IV, Apr 24 2010

References

  • Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980
  • Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005

Crossrefs

Cf. A030430 (primes of the form 10*n+1).
Cf. A167535 (concatenation of two square numbers which give a prime).
See A168219 for the numbers n.

Programs

  • Magma
    [ a: n in [1..150] | IsPrime(a) where a is 10*n^3+1 ]; // Vincenzo Librandi, Jul 25 2011
  • Mathematica
    Select[Table[10*n^3+1,{n,1000}],PrimeQ] (* Vincenzo Librandi, Aug 01 2012 *)
  • PARI
    for(n=1,2e2, isprime(n^3*10+1) && print1(n^3*10+1", "))  \\ M. F. Hasler, Jul 24 2011
    

Formula

a(n) = 10*A168219(n)^3 + 1. \\ M. F. Hasler, Jul 24 2011

A173836 Natural numbers n such that the concatenation 1331//n^3 is a prime number.

Original entry on oeis.org

21, 27, 29, 41, 101, 119, 141, 171, 173, 177, 191, 197, 219, 243, 267, 291, 309, 327, 333, 369, 371, 383, 411, 417, 1019, 1049, 1059, 1091, 1157, 1163, 1211, 1311, 1337, 1343, 1359, 1371, 1379, 1409, 1461, 1473, 1481, 1503, 1521, 1593, 1599, 1613, 1637
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 26 2010

Keywords

Comments

Given the cube n^3 with k = A111393(n) decimal digits, we have to check whether the concatenation, 11^3 * 10^k + n^3, is a prime.
The number k of digits that 1331=11^3 is shifted is not a multiple of 3,
because the form a^3+b^3 = (a^2+a*b+b^2) * (a - b) cannot construct a prime.

Examples

			21 is in the sequence because 21^3=9261, and the concatenation is 13319261=prime(868687).
27 is in the sequence because 27^3=19683, and the concatenation is 133119683=prime(7545064).
		

References

  • K. Haase, P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985

Crossrefs

Programs

  • Mathematica
    Select[Range[2000],PrimeQ[FromDigits[Join[{1,3,3,1}, IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Oct 14 2011 *)

Extensions

Comments sligthly rephrased - R. J. Mathar, Mar 05 2010

A173579 Natural numbers n which give primes when 1331 = 11^3 is prefixed.

Original entry on oeis.org

3, 17, 21, 53, 57, 69, 83, 87, 107, 119, 123, 153, 207, 227, 243, 249, 251, 261, 269, 279, 293, 299, 327, 329, 333, 339, 347, 377, 381, 383, 399, 411, 431, 437, 443, 471, 489, 497, 513, 521, 527, 549, 567, 573, 579, 587, 591, 597, 599, 611, 633, 641, 647, 657
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 22 2010

Keywords

Comments

Concatenation of N = 1331 = 11^3 = palindrome(113) and natural n is a prime. No zeros "between" N and n.
13 = emirp(1) = prime(6), R(13) = 31 = emirp(3) = prime(11).
Necessarily n = 3 * k or n = 3 * k + 2, but not n = 3 * k + 1, because sod(1331) = 8. So no prime twins are terms of the sequence.

Examples

			13313 = prime(1581) => a(1) = 3.
133117 = prime(12425) => a(2) = 17.
133103, 133109 are prime, but "0" included: "03" resp. "09" are no terms of the sequence.
		

References

  • Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005
  • K. Haase, P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985
  • Theo Kempermann: Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005

Crossrefs

Programs

  • Mathematica
    Select[Range[700],PrimeQ[1331*10^IntegerLength[#]+#]&] (* Harvey P. Dale, Jun 25 2020 *)
  • PARI
    isok(n) = isprime(n + 1331*10^(length(Str(n)))); \\ Michel Marcus, Aug 27 2013

A168274 Primes p such that 10*p^3 + 1 is prime.

Original entry on oeis.org

3, 31, 37, 43, 73, 109, 163, 211, 241, 313, 337, 409, 499, 673, 739, 757, 907, 1033, 1039, 1069, 1237, 1327, 1447, 1483, 1489, 1597, 1663, 1741, 1777, 1933, 2083, 2143, 2251, 2437, 2683, 2797, 3001, 3181, 3307, 3319, 3463, 3739, 3793, 4051
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 22 2009

Keywords

Comments

Subsequence of A168219.

Examples

			10*3^3+1 = 271 is prime, so prime 3 is in the sequence.
10*313^3+1 = 306642971 is prime, so prime 313 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(5000) | IsPrime(10*p^3+1) ]; // Vincenzo Librandi, Jan 29 2011
    
  • Mathematica
    Select[Prime[Range[100]], PrimeQ[10*#^3 + 1] &] (* G. C. Greubel, Jul 16 2016 *)
  • PARI
    select(p->isprime(10*p^3+1), primes(1000)) \\ Charles R Greathouse IV, Jul 16 2016

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010

A173733 Primes p which give primes when 1331 = 11^3 is prefixed (see A173579).

Original entry on oeis.org

3, 17, 53, 83, 107, 227, 251, 269, 293, 347, 383, 431, 443, 521, 587, 599, 641, 647, 683, 719, 761, 773, 821, 857, 929, 1031, 1097, 1217, 1223, 1301, 1367, 1409, 1433, 1451, 1619, 1637, 1709, 1787, 1973, 2081, 2087, 2129, 2399, 2477, 2591, 2633, 2657, 2693
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 23 2010

Keywords

Comments

N = 1331 = 11^3, p k-digit prime, to check if q = N * 10^k + p is prime
With exception of 3 necessarily p of form 3k+2, as sod(1331 = 8)

Examples

			13313 = prime(1581) => a(1) = prime(2) = 3
133117 = prime(12425) => a(2) = prime(7) = 17
133153 = prime(12427) => a(3) = prime(16) = 53
13311217 = prime(868166) => a(28) = prime(199) = 1217
13311223 = prime(868167) => a(29) = prime(200) = 1223
Note: two consecutive primes P = prime(n), Q = prime(n+1) yield consecutive prime concatenations "N P" = prime(m) and "N Q" = prime(m+1)
		

References

  • K. Haase, P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985
  • Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[FromDigits[Join[{1,3,3,1}, IntegerDigits[ #]]]]&] (* Harvey P. Dale, Jun 09 2015 *)

Extensions

Edited and extended by Charles R Greathouse IV, Apr 24 2010

A176722 Primes of the form k^3 + 13, k >= 0.

Original entry on oeis.org

13, 229, 1013, 1741, 39317, 64013, 74101, 157477, 438989, 551381, 830597, 1906637, 2000389, 4096013, 7077901, 9261013, 10941061, 15625013, 16003021, 21024589, 24897101, 27000013, 69934541, 74088013, 79507013, 93576677, 122023949
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 25 2010

Keywords

Comments

Necessarily, k = 6 * j or k = 6 * j + 4.
Values of k corresponding to terms of the sequence: 0, 6, 10, 12, 34, 40, 42, 54, 76, 82, 94, 124, 126, 160, 192, 210, 222, 250, 252, 276, 292, 300, 412, 420, 430, 454, 496, 502, 570, 586, 612, 622, 640, 670, 684, 712, 720, 724, 726, 756, 784, 822, 826, 874, 882, 894, 934, 952, 964, 1006, 1056.

Examples

			0^3 + 13 = 13 = prime(6) = a(1);
6^3 + 13 = 229 = prime(50) = a(2);
300^3 + 13 = 27000013 = prime(1683067) = a(22).
		

References

  • H. Rademacher, Topics in Analytic Number Theory, Springer-Verlag Berlin, 1973.

Crossrefs

Programs

  • Magma
    [a: n in [0..500]|IsPrime(a) where a is n^3+13] // Vincenzo Librandi, Dec 22 2010
  • Maple
    select(isprime,[seq(seq((6*j+m)^3+13,m=[0,4]),j=0..1000)]); # Robert Israel, Jun 28 2018
  • Mathematica
    Select[Range[0,1000]^3+13,PrimeQ]  (* Harvey P. Dale, Mar 12 2011 *)

A173874 Primes in A173836.

Original entry on oeis.org

29, 41, 101, 173, 191, 197, 383, 1019, 1049, 1091, 1163, 1409, 1481, 1613, 1637, 1721, 1823, 1913, 1973, 2027, 2099, 2243, 2339, 2351, 2447, 2729, 2837, 2897, 2999, 3023, 3089, 3137, 3167, 3203, 3251, 3407, 3881, 4019, 4349, 4397, 4451, 4457
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 01 2010

Keywords

Comments

For a prime p and its k-digit cube p^3 we need to check if q = 11^3 * 10^k + p^3 is a prime.
11^3*10^k is congruent to 2 (mod 3), so p^3 must be congruent to 2 (mod 3) because otherwise the sum q cannot become a prime.
In turn, all p in the sequence are also congruent to 2 (mod 3) (see A003627).

Examples

			The prime 29 is in the sequence because 29^3=24389, and the concatenation 133124389=prime(7545294) is a prime number.
		

References

  • K. Haase and P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985

Crossrefs

Programs

  • Maple
    cat2 := proc(a,b) ndgs := max(1, ilog10(b)+1) ; a*10^ndgs+b ; end proc:
    for i from 1 to 800 do p := ithprime(i) ; if isprime(cat2(1331,p^3)) then printf("%d,",p) ; end if; end do: # R. J. Mathar, Mar 26 2010
  • Mathematica
    Select[Prime[Range[2000]],PrimeQ[FromDigits[Join[{1,3,3,1}, IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Oct 14 2011 *)

Extensions

Definition simplified, missing numbers 2243, 2339 etc. inserted, numbers like 2621, 2693 removed - R. J. Mathar, Mar 26 2010
Showing 1-7 of 7 results.