cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A168417 Primes q for which 1 concatenated with q^3 (A168327) is prime.

Original entry on oeis.org

3, 13, 103, 109, 139, 163, 181, 211, 379, 457, 463, 1021, 1087, 1123, 1201, 1249, 1303, 1381, 1579, 1597, 1609, 1699, 1861, 1873, 1987, 2011, 2029, 2053, 2143, 2221, 2281, 2341, 2473, 2503, 2557, 2731, 2857, 3061, 3067, 3217, 3253, 3271, 3319, 3331, 3517
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 25 2009

Keywords

Comments

It is conjectured that this sequence is infinite.

Examples

			(1) "1 3^3"=10^2+3^3=127=prime(31) gives a(1)=3=prime(2)
(2) "1 103^3"=10^7+103^3=11092727=prime(732258) gives a(3)=103=prime(27)
		

References

  • Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980
  • Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005

Crossrefs

A168147 Primes of the form p = 1 + 10*n^3 for a natural number n
A168327 Primes of concatenated form p= "1 n^3"
A168375 Natural numbers n for which the concatenation p= "1 n^3" is prime

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeQ[FromDigits[Join[{1},IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Jan 21 2013 *)

Extensions

Edited and extended by Charles R Greathouse IV, Apr 23 2010

A168375 Natural numbers n for which the concatenation p= "1 n^3" (A168327) is prime.

Original entry on oeis.org

1, 3, 13, 33, 39, 103, 109, 123, 139, 163, 169, 171, 181, 183, 207, 211, 289, 297, 303, 309, 339, 369, 379, 393, 423, 451, 457, 463, 1021, 1027, 1047, 1053, 1057, 1081, 1087, 1111, 1123, 1161, 1189, 1201, 1249, 1273, 1293, 1303, 1329, 1339, 1351, 1381, 1387
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 24 2009

Keywords

Comments

It is conjectured that sequence is infinite

Examples

			(1) "1 1^3"=10^1+1^3=11=prime(5) gives a(1)=1
(2) "1 3^3"=10^2+3^3=127=prime(31) gives a(2)=3
(3) "1 13^3"=10^4+13^3=12197=prime(1458) gives a(3)=13
		

References

  • Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980
  • Friedhelm Padberg, Elementare Zahlentheorie, Spektrum Akademischer Verlag, 2. Auflage 1991
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996

Crossrefs

Cf. A000040 The prime numbers
Cf. A168147 Primes of the form p = 1 + 10*n^3 for a natural number n
Cf. A168327 Primes of concatenated form p= "1 n^3"
Cf. A167535 Concatenation of two square numbers which give a prime

Formula

If n^3 is a d-digit natural number, odd and no multiple of 5, and d no multiple of 3, then p=10^d+n^3

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010

A174213 Natural numbers n such that the concatenation n//1331 is a prime number.

Original entry on oeis.org

6, 8, 9, 23, 29, 30, 32, 39, 42, 45, 53, 57, 65, 80, 92, 95, 101, 102, 108, 113, 116, 128, 141, 144, 153, 161, 182, 183, 186, 200, 206, 216, 218, 219, 225, 239, 245, 249, 260, 266, 270, 273, 279, 281, 282, 296, 311, 314, 318, 321
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 12 2010

Keywords

Comments

n is no multiple of 11 as 1331 = 11^3.
Necessarily n = 3 * k or n = 3 * k + 2, but not n = 3 * k + 1, because sod(1331) = 8.
Sequence is infinite, Dirichlet's prime number theorem for naturals of the form n * 10^4 + 1331.
For prefixed 1331 and references see A173836.

Examples

			61331 = prime(6169) => a(1) = 6.
81331 = prime(7958) => a(2) = 8.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400],PrimeQ[#*10^4+1331]&] (* Harvey P. Dale, Jan 17 2019 *)
  • PARI
    isok(n) = isprime(n*10^4 + 1331); \\ Michel Marcus, Aug 27 2013

A174260 Prime numbers p such that the concatenation p//1331 is a prime number.

Original entry on oeis.org

23, 29, 53, 101, 113, 239, 281, 311, 347, 353, 389, 401, 431, 617, 641, 647, 743, 797, 821, 827, 863, 911, 941, 1049, 1283, 1319, 1373, 1439, 1481, 1487, 1493, 1511, 1583, 1613, 1667, 1709, 1721, 1733, 1823, 1949
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 14 2010

Keywords

Comments

Necessarily (as sod(1331) = 3 * 2 + 2): p = 6 * k - 1
See comments and references for A174213

Examples

			231331 = prime(20545) => p(1) = 23 = prime(9)
291331 = prime(25334) => p(2) = 29 = prime(10)
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[300]],PrimeQ[1331+10000#]&] (* Harvey P. Dale, Jun 22 2013 *)

A174355 Natural numbers n such that the concatenations n//1331 and 1331//n are prime numbers.

Original entry on oeis.org

53, 57, 153, 249, 279, 329, 333, 339, 347, 381, 399, 431, 471, 489, 641, 647, 711, 821, 851, 923, 959, 987, 1169, 1239, 1313, 1383, 1479, 1547, 1563, 1589, 1611, 1653, 1677, 1709, 1773, 1863, 1887, 1973, 2031, 2067
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 17 2010

Keywords

Comments

See comments and references for A173836, A174213.
Intersection of A173579 and A174213. - Michel Marcus, Aug 27 2013

Examples

			531331 = prime(43928), 133153 = prime(12427), 53 is smallest term of sequence.
		

References

  • Marcus du Sautoy: Die Musik der Primzahlen. Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen 2004

Crossrefs

Programs

  • Mathematica
    Select[Range[2100],AllTrue[{#*10^4+1331,1331*10^IntegerLength[#]+#},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 21 2015 *)
  • PARI
    isok(n) = isprime(n*10^4 + 1331) && isprime(1331*10^(length(Str(n))) + n); \\ Michel Marcus, Aug 27 2013

A173291 Smallest prime p such that the concatenation of p and prime(n) is a prime, or 0 if no other number exists.

Original entry on oeis.org

0, 2, 0, 3, 2, 3, 3, 7, 2, 2, 3, 3, 2, 7, 3, 3, 3, 7, 3, 2, 3, 3, 2, 3, 3, 5, 7, 5, 3, 2, 7, 2, 2, 19, 11, 7, 19, 3, 3, 9, 2, 3, 3, 7, 5, 37, 7, 31, 5, 3, 5, 2, 13, 2, 3, 41, 2, 3, 31, 2, 7, 2, 3, 2, 3, 11, 3, 13, 2, 7, 11, 3, 13, 3, 19, 2, 2, 13, 17, 37, 5, 13, 5, 3, 139, 5, 3, 3, 3, 3, 2, 5, 7, 3, 3
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 15 2010

Keywords

Comments

If prime(n) has k digits then a(k) is the smallest prime(m) where 10^k * prime(m) + prime(n) is a prime.
In base 10, no prime can be prefixed to 2 or 5 to make another prime.

Examples

			a(2) = 2 because prime(2) = 3, and the concatenation of 2 and 3 gives the prime 23.
a(3) = 0 because prime(3) = 5 and there is no prime to concatenate with to give another prime.
a(4) = 3 because prime(5) = 7 but the concatenation with 2 gives 27 = 3^3, so it has to be 3 in order to give 37, which is prime.
		

References

  • John Derbyshire, Prime obsession. Joseph Henry Press, Washington, DC 2003
  • Marcus du Sautoy, Die Musik der Primzahlen. Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen 2004
  • Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005

Crossrefs

A174441 Primes p such that the concatenations p//1331 and 1331//p are both prime numbers (for naturals see A174355).

Original entry on oeis.org

53, 347, 431, 641, 647, 821, 1709, 1973, 2081, 2591, 2657, 2963, 4073, 4139, 4643, 4787, 5039, 5483, 5657, 6029, 6791, 6917, 6959, 7127, 7673, 8273, 8693, 8807, 8849, 9221, 9311, 9689, 10139, 10457, 11423, 12503, 12743, 13619, 13913, 14549
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 20 2010

Keywords

Comments

See comments and references for A173836, A174213.

Examples

			531331 = prime(43928), 133153 = prime(12427) => p(1) = 53 = prime(16).
3471331 = prime(248286), 1331347 = prime(102237) => p(2) = 347 = prime(69).
139131331 = prime(7865788), 133113913 = prime(7544750) => p(39) = 13913 = prime(1645).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2000]],AllTrue[{#*10^4+1331,1331*10^IntegerLength[ #]+#}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 08 2016 *)
  • PARI
    isok(n) = isprime(n) && isprime(n*10^4 + 1331) && isprime(1331*10^(length(Str(n))) + n); \\ Michel Marcus, Aug 27 2013

A176600 Numbers n such that concatenations n//13 and n//31 are consecutive primes.

Original entry on oeis.org

19, 190, 250, 346, 378, 400, 402, 456, 516, 553, 567, 586, 664, 759, 762, 853, 931, 972, 1140, 1156, 1161, 1242, 1266, 1284, 1314, 1317, 1338, 1398, 1440, 1645, 1744, 1785, 1840, 1875, 1930, 1944, 2227, 2248, 2271, 2287, 2316, 2397, 2401, 2467, 2568, 2602
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 21 2010

Keywords

Comments

p = n//13 = n * 10^2 + 13 = prime(i) , q = n//31 = n * 10^2 + 31 = prime(i+1)
p and q are formed by the same digits (counted with multiplicity)
n = m//k (k = 0, 1, ...,9)
List of m < 10^3
0//13: 19, 25, 40, 114, 144, 184, 193, 280, 411, 415, 567, 604, 634, 777, 852, 862, 870, 943 (18)
1//13: 93, 116, 227, 240, 392, 462, 543, 570, 611, 675, 689, 734, 759, 821, 822, 878, 969, 986 (18)
2//13: 40, 76, 97, 124, 260, 338, 365, 415, 505, 545, 599, 625, 788, 809 (14)
3//13: 55, 85, 312, 349, 421, 424, 451, 454, 619, 622, 724, 928 (12)
4//13: 66, 128, 131, 174, 194, 293, 345, 414, 657, 687, 702, 741, 752, 867, 870, 939 (16)
5//13: 164, 178, 187, 277, 379, 416, 481, 536, 754, 824, 935, 974, 995 (13)
6//13: 34, 45, 51, 58, 115, 126, 231, 336, 402, 432, 439, 489, 502, 541, 705, 780, 838, 850, 909, 985 (20)
7//13: 56, 131, 222, 228, 239, 246, 309, 480, 530, 716, 732, 747, 761, 792, 831, 936, 981 (17)
8//13: 37, 133, 139, 224, 256, 286, 301, 304, 497, 518, 550, 559, 562, 728, 856, 907 (16)
9//13: 1, 75, 526, 558, 681, 720, 765, 916, 943 (9)
The sequence could be defined as "Numbers n such that 100n+13 and 100n+31 are consecutive primes". In that sense it could be considered to be independent of the decimal numeral system. - M. F. Hasler, Dec 04 2010

Examples

			19//13 = 1913 = prime(293), 19//31 = 1931 = prime(294), 19 is 1st term
190//13 = 19013 = prime(2161), 190//31 = 19031 = prime(2162), 190 is 2nd term
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],PrimeQ[# 100+13]&&NextPrime[# 100+13]==# 100+31&] (* Harvey P. Dale, Jun 23 2022 *)
  • PARI
    A176600(n,print_all=0)={ for(k=1,1e9,isprime(100*k+13) || next;nextprime(100*k+17)==100*k+31||next;print_all & print1(k",");n-- || return(k))} \\ M. F. Hasler, Dec 04 2010

A176601 Primes p that p//13 and p//31 are consecutive primes.

Original entry on oeis.org

19, 853, 2287, 2467, 4243, 4513, 4621, 5431, 5701, 7243, 7477, 7591, 7927, 8221, 8317, 9283, 9439, 9817, 10039, 12781, 13933, 14461, 14923, 15727, 16693, 17443, 18199, 18217, 19207, 20749, 21139, 22147, 23761, 25471, 26701, 26953, 27481, 28111, 28447, 28579
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 21 2010

Keywords

Comments

See A176600.

Examples

			19//13 = 1913 = prime(293), 19//31 = 1931 = prime(294), 19 = prime(8) is 1st term.
853//13 = 85313 = prime(8306), 853//31 = 85331 = prime(8307), 853 = prime(147) is 2nd term.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n],p13,p31},p13=FromDigits[ Join[ idn,{1,3}]];p31=FromDigits[Join[idn,{3,1}]];PrimeQ[p13]&&NextPrime[p13] == p31]; Select[Prime[Range[16000]],okQ] (* Harvey P. Dale, Jan 21 2012 *)

Extensions

More terms from Harvey P. Dale, Jan 21 2012

A176722 Primes of the form k^3 + 13, k >= 0.

Original entry on oeis.org

13, 229, 1013, 1741, 39317, 64013, 74101, 157477, 438989, 551381, 830597, 1906637, 2000389, 4096013, 7077901, 9261013, 10941061, 15625013, 16003021, 21024589, 24897101, 27000013, 69934541, 74088013, 79507013, 93576677, 122023949
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Apr 25 2010

Keywords

Comments

Necessarily, k = 6 * j or k = 6 * j + 4.
Values of k corresponding to terms of the sequence: 0, 6, 10, 12, 34, 40, 42, 54, 76, 82, 94, 124, 126, 160, 192, 210, 222, 250, 252, 276, 292, 300, 412, 420, 430, 454, 496, 502, 570, 586, 612, 622, 640, 670, 684, 712, 720, 724, 726, 756, 784, 822, 826, 874, 882, 894, 934, 952, 964, 1006, 1056.

Examples

			0^3 + 13 = 13 = prime(6) = a(1);
6^3 + 13 = 229 = prime(50) = a(2);
300^3 + 13 = 27000013 = prime(1683067) = a(22).
		

References

  • H. Rademacher, Topics in Analytic Number Theory, Springer-Verlag Berlin, 1973.

Crossrefs

Programs

  • Magma
    [a: n in [0..500]|IsPrime(a) where a is n^3+13] // Vincenzo Librandi, Dec 22 2010
  • Maple
    select(isprime,[seq(seq((6*j+m)^3+13,m=[0,4]),j=0..1000)]); # Robert Israel, Jun 28 2018
  • Mathematica
    Select[Range[0,1000]^3+13,PrimeQ]  (* Harvey P. Dale, Mar 12 2011 *)
Showing 1-10 of 15 results. Next