cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168489 Numbers that are congruent to {7,11} mod 12.

Original entry on oeis.org

7, 11, 19, 23, 31, 35, 43, 47, 55, 59, 67, 71, 79, 83, 91, 95, 103, 107, 115, 119, 127, 131, 139, 143, 151, 155, 163, 167, 175, 179, 187, 191, 199, 203, 211, 215, 223, 227, 235, 239, 247, 251, 259, 263, 271, 275, 283, 287, 295, 299, 307, 311, 319, 323, 331, 335
Offset: 1

Views

Author

Vincenzo Librandi, Nov 27 2009

Keywords

Comments

From Arkadiusz Wesolowski, Mar 16 2014: (Start)
Odd numbers m for which 2/m is not equal to 1/x + 1/y with x = 2*floor((m + 1)/4) + 1 and an integer y > x.
The primes together with 3 are in A002145. (End)
Odd numbers not of the form (4j+1)*3^k, {j,k>=0}. - Bob Selcoe, Aug 30 2015
Nonnegative k for which k == 3 (mod 4) and k^2 == 1 (mod 3). - Bruno Berselli, Apr 26 2018
Numbers that are not divisible by their digital root in base 5. - Amiram Eldar, Nov 24 2022

Crossrefs

Programs

  • Magma
    [6*n-(-1)^n: n in [1..60]]; // Vincenzo Librandi, Aug 10 2012
    
  • Mathematica
    LinearRecurrence[{1, 1, -1}, {7, 11, 19}, 60] (* or *) Select[Range[350],  MemberQ[{7, 11}, Mod[#, 12]]&] (* Harvey P. Dale, Nov 10 2011 *)
    Rest[CoefficientList[Series[x (7 + 4 x + x^2)/((1 + x) (x - 1)^2), {x, 0, 56}], x] ] (* Ray Chandler, Jul 07 2015 *)
    RecurrenceTable[{a[n] == 12 n - 6 - a[n-1], a[1]==7}, a, {n, 1, 100}] (* G. C. Greubel, Aug 30 2015 *)
  • PARI
    x='x+O('x^100); Vec(x*(7+4*x+x^2)/((1+x)*(x-1)^2)) \\ Altug Alkan, Oct 22 2015

Formula

a(n) = 12*n - a(n-1) - 6 for n>1, a(1)=7.
From R. J. Mathar, Mar 21 2010: (Start)
a(n) = 6*n - (-1)^n.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(7 + 4*x + x^2)/ ((1+x) * (x-1)^2). (End)
E.g.f.: 1 + 6*x*exp(x) - exp(-x). - G. C. Greubel, Aug 30 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/12 - log(2+sqrt(3))/(2*sqrt(3)). - Amiram Eldar, Dec 30 2021