A168489 Numbers that are congruent to {7,11} mod 12.
7, 11, 19, 23, 31, 35, 43, 47, 55, 59, 67, 71, 79, 83, 91, 95, 103, 107, 115, 119, 127, 131, 139, 143, 151, 155, 163, 167, 175, 179, 187, 191, 199, 203, 211, 215, 223, 227, 235, 239, 247, 251, 259, 263, 271, 275, 283, 287, 295, 299, 307, 311, 319, 323, 331, 335
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[6*n-(-1)^n: n in [1..60]]; // Vincenzo Librandi, Aug 10 2012
-
Mathematica
LinearRecurrence[{1, 1, -1}, {7, 11, 19}, 60] (* or *) Select[Range[350], MemberQ[{7, 11}, Mod[#, 12]]&] (* Harvey P. Dale, Nov 10 2011 *) Rest[CoefficientList[Series[x (7 + 4 x + x^2)/((1 + x) (x - 1)^2), {x, 0, 56}], x] ] (* Ray Chandler, Jul 07 2015 *) RecurrenceTable[{a[n] == 12 n - 6 - a[n-1], a[1]==7}, a, {n, 1, 100}] (* G. C. Greubel, Aug 30 2015 *)
-
PARI
x='x+O('x^100); Vec(x*(7+4*x+x^2)/((1+x)*(x-1)^2)) \\ Altug Alkan, Oct 22 2015
Formula
a(n) = 12*n - a(n-1) - 6 for n>1, a(1)=7.
From R. J. Mathar, Mar 21 2010: (Start)
a(n) = 6*n - (-1)^n.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(7 + 4*x + x^2)/ ((1+x) * (x-1)^2). (End)
E.g.f.: 1 + 6*x*exp(x) - exp(-x). - G. C. Greubel, Aug 30 2015
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/12 - log(2+sqrt(3))/(2*sqrt(3)). - Amiram Eldar, Dec 30 2021
Comments