cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A168583 The number of ways of partitioning the multiset {1,1,2,3,...,n-1} into exactly three nonempty parts.

Original entry on oeis.org

1, 4, 16, 58, 196, 634, 1996, 6178, 18916, 57514, 174076, 525298, 1582036, 4758394, 14299756, 42948418, 128943556, 387027274, 1161475036, 3485211538, 10457207476, 31374768154, 94130595916, 282404370658, 847238277796, 2541765165034, 7625396158396
Offset: 3

Views

Author

Martin Griffiths, Nov 30 2009

Keywords

Comments

The number of ways of partitioning the multiset {1, 1, 2, 3, ..., n-1} into exactly two, four and five nonempty parts are given in A083329, A168584 and A168585, respectively.

Examples

			The partitions of {1,1,2,3} into exactly three nonempty parts are {{1},{1},{2,3}}, {{1},{2},{1,3}}, {{1},{3},{1,2}} and {{2},{3},{1,1}}.
		

Crossrefs

Programs

  • Magma
    [3^(n-2) - 3*2^(n-3) + 1: n in [3..35]]; // Vincenzo Librandi, Dec 12 2015
  • Maple
    A168583:=n->3^(n-2)-3*2^(n-3)+1: seq(A168583(n), n=3..40); # Wesley Ivan Hurt, Dec 12 2015
  • Mathematica
    f1[n_] := 3^(n - 2) - 3 2^(n - 3) + 1; Table[f1[n], {n, 3, 25}]

Formula

For a>=3, a(n) = 3^(n-2) - 3*2^(n-3) + 1.
E.g.f.: 3*e^(3x) - 3*e^(2x) + e^x (shifted).
O.g.f.: x^3*(1-2x+3x^2)/((1-x)*(1-2x)*(1-3x)).
a(n) = A126644(n-3). - R. J. Mathar, Dec 11 2009

A241500 Triangle T(n,k): number of ways of partitioning the n-element multiset {1,1,2,3,...,n-1} into exactly k nonempty parts, n>=1 and 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 11, 16, 7, 1, 1, 23, 58, 41, 11, 1, 1, 47, 196, 215, 90, 16, 1, 1, 95, 634, 1041, 640, 176, 22, 1, 1, 191, 1996, 4767, 4151, 1631, 315, 29, 1, 1, 383, 6178, 21001, 25221, 13587, 3696, 526, 37, 1, 1, 767, 18916, 90055, 146140, 105042, 38409, 7638, 831, 46, 1
Offset: 1

Views

Author

Andrew Woods, Apr 24 2014

Keywords

Examples

			There are 58 ways to partition {1,1,2,3,4,5} into three nonempty parts.
The first few rows are:
  1;
  1,   1;
  1,   2,    1;
  1,   5,    4,     1;
  1,  11,   16,     7,     1;
  1,  23,   58,    41,    11,     1;
  1,  47,  196,   215,    90,    16,    1;
  1,  95,  634,  1041,   640,   176,   22,   1;
  1, 191, 1996,  4767,  4151,  1631,  315,  29,  1;
  1, 383, 6178, 21001, 25221, 13587, 3696, 526, 37, 1;
  ...
		

Crossrefs

The first five columns appear as A000012, A083329, A168583, A168584, A168585.
Row sums give A035098.

Programs

  • PARI
    T(n,k) = stirling(n-1,k,2) + stirling(n-1,k-1,2) + binomial(k,2)*stirling(n-2,k,2); \\ Michel Marcus, Apr 24 2014

Formula

T(n,k) = S(n-1,k) + S(n-1,k-1) + C(k,2)*S(n-2,k), where S refers to Stirling numbers of the second kind (A008277), and C to binomial coefficients (A007318).

A168584 Number of ways of partitioning the multiset {1,1,2,3,...,n-1} into exactly four nonempty parts.

Original entry on oeis.org

1, 7, 41, 215, 1041, 4767, 21001, 90055, 378881, 1572527, 6463161, 26375895, 107081521, 433076287, 1746588521, 7029269735, 28245956961, 113370724047, 454644109081, 1822061123575, 7298700653201, 29226175283807
Offset: 4

Views

Author

Martin Griffiths, Nov 30 2009

Keywords

Comments

The number of ways of partitioning the multiset {1, 1, 2, 3, ..., n-1} into exactly two, three and five nonempty parts are given in A083329, A168583 and A168585, respectively.

Crossrefs

Programs

  • Magma
    [(5*4^(n-3)-3^(n-1)+3*2^(n-2)-2)/3: n in [4..30]]; // Wesley Ivan Hurt, Dec 12 2015
  • Maple
    A168584:=n->(5*4^(n-3)-3^(n-1)+3*2^(n-2)-2)/3: seq(A168584(n), n=4..30); # Wesley Ivan Hurt, Dec 12 2015
  • Mathematica
    f2[n_] := 1/3 (5 4^(n - 3) - 3^(n - 1) + 3 2^(n - 2) - 2); Table[f2[n], {n, 4, 25}]
    LinearRecurrence[{10,-35,50,-24},{1,7,41,215},30] (* Harvey P. Dale, Sep 15 2020 *)

Formula

For a>=4, a(n) = (5*4^(n-3) - 3^(n-1) + 3*2^(n-2) - 2)/3.
The shifted exponential generating function is (20e^(4x) - 27e^(3x) + 12e^(2x) - 2e^x)/3.
The ordinary generating function is x^4(1-3x+6x^2)/((1-x)(1-2x)(1-3x)(1-4x)).
Showing 1-3 of 3 results.