A321358
a(n) = (2*4^n + 7)/3.
Original entry on oeis.org
3, 5, 13, 45, 173, 685, 2733, 10925, 43693, 174765, 699053, 2796205, 11184813, 44739245, 178956973, 715827885, 2863311533, 11453246125, 45812984493, 183251937965, 733007751853, 2932031007405, 11728124029613, 46912496118445, 187649984473773, 750599937895085, 3002399751580333
Offset: 0
-
a[n_]:= (2*4^n + 7)/3; Array[a, 20, 0] (* or *)
CoefficientList[Series[1/3 (7 E^x + 2 E^(4 x)), {x, 0, 20}], x]*Table[n!, {n, 0, 20}] (* Stefano Spezia, Nov 10 2018 *)
-
a(n) = (2*4^n + 7)/3; \\ Michel Marcus, Nov 08 2018
-
Vec((3 - 10*x) / ((1 - x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Nov 10 2018
A268741
a(n) = 2*a(n - 2) - a(n - 1) for n>1, a(0) = 4, a(1) = 5.
Original entry on oeis.org
4, 5, 3, 7, -1, 15, -17, 47, -81, 175, -337, 687, -1361, 2735, -5457, 10927, -21841, 43695, -87377, 174767, -349521, 699055, -1398097, 2796207, -5592401, 11184815, -22369617, 44739247, -89478481, 178956975, -357913937, 715827887, -1431655761, 2863311535
Offset: 0
a(0) = (5 + 3)/2 = 4 because a(1) = 5, a(2) = 3;
a(1) = (3 + 7)/2 = 5 because a(2) = 3, a(3) = 7;
a(2) = (7 - 1)/2 = 3 because a(3) = 7, a(4) = -1, etc.
-
[(13-(-2)^n)/3: n in [0..35]]; // Vincenzo Librandi, Feb 13 2016
-
Table[(13 - (-2)^n)/3, {n, 0, 33}]
LinearRecurrence[{-1, 2}, {4, 5}, 34]
RecurrenceTable[{a[1] == 4, a[2] == 5, a[n] == 2*a[n-2] - a[n-1]}, a, {n, 50}] (* Vincenzo Librandi, Feb 13 2016 *)
-
Vec((4 + 9*x)/(1 + x - 2*x^2) + O(x^40)) \\ Michel Marcus, Feb 25 2016
A340660
A000079 is the first row. For the second row, subtract A001045. For the third row, subtract A001045 from the second one, etc. The resulting array is read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 1, 0, 3, 8, 1, -1, 2, 5, 16, 1, -2, 1, 2, 11, 32, 1, -3, 0, -1, 6, 21, 64, 1, -4, -1, -4, 1, 10, 43, 128, 1, -5, -2, -7, -4, -1, 22, 85, 256, 1, -6, -3, -10, -9, -12, 1, 42, 171, 512, 1, -7, -4, -13, -14, -23, -20, -1, 86, 341, 1024
Offset: 0
Square array:
1, 2, 4, 8, 16, 32, 64, 128, ... = A000079(n)
1, 1, 3, 5, 11, 21, 43, 85, ... = A001045(n+1)
1, 0, 2, 2, 6, 10, 22, 42, ... = A078008(n)
1, -1, 1, -1, 1, -1, 1, -1, ... = A033999(n)
1, -2, 0, -4, -4, -12, -20, -44, ... = -A084247(n)
1, -3, -1, -7, -9, -23, -41, -87, ... = (-1)^n*A140966(n+1)
1, -4, -2, -10, -14, -34, -62, -130, ... = -A135440(n)
1, -5, -3, -13, -19, -45, -83, -173, ... = -A155980(n+3) or -A171382(n+1)
...
-
A:= (n, k)-> (<<0|1>, <2|1>>^k. <<1, 2-n>>)[1$2]:
seq(seq(A(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 21 2021
-
A340660[m_, n_] := LinearRecurrence[{1, 2}, {1, m}, {n}]; Table[Reverse[Table[A340660[m, n + m - 2] // First, {m, 2, -n + 3, -1}]], {n, 1, 11}] // Flatten (* Robert P. P. McKone, Jan 28 2021 *)
-
T(n, k) = 2^k - n*(2^k - (-1)^k)/3;
matrix(10,10,n,k,T(n-1,k-1)) \\ Michel Marcus, Jan 19 2021
Showing 1-3 of 3 results.
Comments