cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173018 Euler's triangle: triangle of Eulerian numbers T(n,k) (n>=0, 0 <= k <= n) read by rows.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 11, 11, 1, 0, 1, 26, 66, 26, 1, 0, 1, 57, 302, 302, 57, 1, 0, 1, 120, 1191, 2416, 1191, 120, 1, 0, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 0, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 0, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Nov 21 2010

Keywords

Comments

This version indexes the Eulerian numbers in the same way as Graham et al.'s Concrete Mathematics (see references section). The traditional indexing, used by Riordan, Comtet and others, is given in A008292, which is the main entry for the Eulerian numbers.
Each row of A123125 is the reverse of the corresponding row in A173018. - Michael Somos Mar 17 2011
Triangle T(n,k), read by rows, given by [1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,...] DELTA [0,1,0,2,0,3,0,4,0,5,0,6,0,7,0,8,0,9,...] where DELTA is the operator defined in A084938. - Philippe Deléham Sep 30 2011
[ E(.,t)/(1-t)]^n = n!*Lag[n,-P(.,t)/(1-t)] and [ -P(.,t)/(1-t)]^n = n!*Lag[n, E(.,t)/(1-t)] umbrally comprise a combinatorial Laguerre transform pair, where E(n,t) are the Eulerian polynomials (e.g., E(2,t)= 1+t) and P(n,t) are the polynomials related to polylogarithms in A131758. - Tom Copeland, Oct 03 2014
See A131758 for connections of the evaluation of these polynomials at -1 (alternating row sum) to the Euler, Genocchi, Bernoulli, and zag/tangent numbers and values of the Riemann zeta function and polylogarithms. See also A119879 for the Swiss-knife polynomials. - Tom Copeland, Oct 20 2015

Examples

			Triangle begins:
[ 0] 1,
[ 1] 1,    0,
[ 2] 1,    1,     0,
[ 3] 1,    4,     1,      0,
[ 4] 1,   11,    11,      1,       0,
[ 5] 1,   26,    66,     26,       1,       0,
[ 6] 1,   57,   302,    302,      57,       1,      0,
[ 7] 1,  120,  1191,   2416,    1191,     120,      1,     0,
[ 8] 1,  247,  4293,  15619,   15619,    4293,    247,     1,    0,
[ 9] 1,  502, 14608,  88234,  156190,   88234,  14608,   502,    1, 0,
[10] 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1, 0.
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 254.
  • See A008292 for additional references and links.

Crossrefs

Row sums give A000142.
See A008517 and A201637 for the second-order numbers.
Cf. A123125 (row reversed version).
For this triangle read mod m for m=2 through 10 see A290452-A290460. See also A047999 for the mod 2 version.

Programs

  • Haskell
    a173018 n k = a173018_tabl !! n !! k
    a173018_row n = a173018_tabl !! n
    a173018_tabl = map reverse a123125_tabl
    -- Reinhard Zumkeller, Nov 06 2013
    
  • Magma
    [[n le 0 select 1 else (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 25 2019
    
  • Magma
    T:= func< n,k | n eq 0 select 1 else &+[(-1)^(k-j+1)*Binomial(n+1,k-j+1)*j^n: j in [0..k+1]] >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 28 2020
    
  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n>=0 then 1
        elif k<0 or  k>n  then 0
        else (n-k) * T(n-1, k-1) + (k+1) * T(n-1, k)
          fi
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Jan 14 2011
    # Maple since version 13:
    A173018 := (n,k) -> combinat[eulerian1](n,k): # Peter Luschny, Nov 11 2012
    # Or:
    egf := 1 + log((x*exp(-t) - exp(-t*x))/(x-1))/(t*x):
    ser := series(egf, t, 12): ct := n -> coeff(ser, t, n):
    seq(print(seq((-1)^n*(n+1)!*coeff(ct(n), x, k), k=0..n)), n=0..8); # Peter Luschny, Aug 12 2022
  • Mathematica
    t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0;
    t[n_,k_] := t[n,k] = (n-k)*t[n-1,k-1] + (k+1)*t[n-1, k]; Flatten[Table[t[n,k], {n,0,11}, {k,0,n}]][[1 ;; 60]]
    (* Jean-François Alcover, Apr 29 2011, after Maple program *)
    << Combinatorica`
    Flatten[Table[Eulerian[n, k], {n, 0, 20}, {k, 0, n}]]
    (* To generate the table of the numbers T(n,k) *)
    RecurrenceTable[{T[n + 1, k + 1] == (n - k) T[n, k] + (k + 2) T[n, k + 1], T[0, k] == KroneckerDelta[k]}, T, {n, 0, 12}, {k, 0, 12}] (* Emanuele Munarini, Jan 03 2018 *)
    Table[If[n==0,1, Sum[(-1)^j*Binomial[n+1, j]*(k+1-j)^n, {j,0,k+1}]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 25 2019 *)
  • PARI
    T(n,k) = if(n==0, 1, sum(j=0,k+1, (-1)^(k-j+1)*binomial(n+1,k-j+1)*j^n)); \\ G. C. Greubel, Feb 28 2020
  • Sage
    @CachedFunction
    def eulerian1(n, k):
        if k==0: return 1
        if k==n: return 0
        return eulerian1(n-1, k)*(k+1)+eulerian1(n-1, k-1)*(n-k)
    for n in (0..9): [eulerian1(n, k) for k in(0..n)] # Peter Luschny, Nov 11 2012
    
  • Sage
    [1] + [[sum((-1)^(k-j+1)*binomial(n+1,k-j+1)*j^n for j in (0..k+1)) for k in (0..n)] for n in (1..12)] # G. C. Greubel, Feb 25 2019
    

Formula

E.g.f.: (y - 1)/(y - exp(x*(y - 1))). - Geoffrey Critzer, May 04 2017
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(n+1, j)*(k+1-j)^n. - G. C. Greubel, Feb 25 2019
T(n, k) = (-1)^n*(n+1)!*[x^k][t^n](1 + log((x*exp(-t) - exp(-t*x))/(x-1))/(t*x)). - Peter Luschny, Aug 12 2022