A173018 Euler's triangle: triangle of Eulerian numbers T(n,k) (n>=0, 0 <= k <= n) read by rows.
1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 11, 11, 1, 0, 1, 26, 66, 26, 1, 0, 1, 57, 302, 302, 57, 1, 0, 1, 120, 1191, 2416, 1191, 120, 1, 0, 1, 247, 4293, 15619, 15619, 4293, 247, 1, 0, 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 0, 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1, 0
Offset: 0
Examples
Triangle begins: [ 0] 1, [ 1] 1, 0, [ 2] 1, 1, 0, [ 3] 1, 4, 1, 0, [ 4] 1, 11, 11, 1, 0, [ 5] 1, 26, 66, 26, 1, 0, [ 6] 1, 57, 302, 302, 57, 1, 0, [ 7] 1, 120, 1191, 2416, 1191, 120, 1, 0, [ 8] 1, 247, 4293, 15619, 15619, 4293, 247, 1, 0, [ 9] 1, 502, 14608, 88234, 156190, 88234, 14608, 502, 1, 0, [10] 1, 1013, 47840, 455192, 1310354, 1310354, 455192, 47840, 1013, 1, 0.
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, table 254.
- See A008292 for additional references and links.
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- J. Fernando Barbero G., Jesús Salas and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. II. Applications, arXiv:1307.5624 [math.CO], 2013.
- Paul Barry, Eulerian polynomials as moments, via exponential Riordan arrays, arXiv preprint arXiv:1105.3043 [math.CO], 2011, J. Int. Seq. 14 (2011) # 11.9.5
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Generalized Eulerian Triangles and Some Special Production Matrices, arXiv:1803.10297 [math.CO], 2018.
- Digital Library of Mathematical Functions, Permutations: Order Notation
- FindStat - Combinatorial Statistic Finder, The number of descents of a permutation.
- Arnošt J. J. Heidrich, On the factorization of Eulerian polynomials, Journal of Number Theory, 18(2):157-168, 1984.
- Friedrich Hirzebruch, Eulerian polynomials, Münster J. of Math. 1 (2008), pp. 9-12.
- Pawel Hitczenko and Svante Janson, Weighted random staircase tableaux, arXiv:1212.5498 [math.CO], 2012.
- John M. Holte, Carries, Combinatorics and an Amazing Matrix, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 138-149.
- Hsien-Kuei Hwang, Hua-Huai Chern and Guan-Huei Duh, An asymptotic distribution theory for Eulerian recurrences with applications, arXiv:1807.01412 [math.CO], 2018.
- Svante Janson, Euler-Frobenius numbers and rounding, arXiv:1305.3512 [math.PR], 2013.
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli numbers, arXiv:1707.04451 [math.NT], 2017.
- Andrey Losev and Yuri Manin, New moduli spaces of pointed curves and pencils of flat connections, arXiv preprint arXiv:0001003 [math.AG], 2000 (p. 8). [From _Tom Copeland_, Oct 03 2014]
- Peter Luschny, Eulerian polynomials
- John F. Sallee, The middle-cut triangulations of the n-cube, SIAM J. Algebraic Discrete Methods 5 (1984), no. 3, 407--419. MR0752044 (86c:05054). See Table 1. [From _N. J. A. Sloane_, Apr 09 2014]
- Yuriy Shablya, Dmitry Kruchinin and Vladimir Kruchinin, Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees and Its Application, Mathematics (2020) Vol. 8, No. 6, 962.
- Marni Dee Sheppeard, Constructive motives and scattering 2013 (p. 41). [From _Tom Copeland_, Oct 03 2014]
- Andrei K. Svinin, Somos-4 equation and related equations, arXiv:2307.05866 [math.CA], 2023. See p. 16.
Crossrefs
Programs
-
Haskell
a173018 n k = a173018_tabl !! n !! k a173018_row n = a173018_tabl !! n a173018_tabl = map reverse a123125_tabl -- Reinhard Zumkeller, Nov 06 2013
-
Magma
[[n le 0 select 1 else (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 25 2019
-
Magma
T:= func< n,k | n eq 0 select 1 else &+[(-1)^(k-j+1)*Binomial(n+1,k-j+1)*j^n: j in [0..k+1]] >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 28 2020
-
Maple
T:= proc(n, k) option remember; if k=0 and n>=0 then 1 elif k<0 or k>n then 0 else (n-k) * T(n-1, k-1) + (k+1) * T(n-1, k) fi end: seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jan 14 2011 # Maple since version 13: A173018 := (n,k) -> combinat[eulerian1](n,k): # Peter Luschny, Nov 11 2012 # Or: egf := 1 + log((x*exp(-t) - exp(-t*x))/(x-1))/(t*x): ser := series(egf, t, 12): ct := n -> coeff(ser, t, n): seq(print(seq((-1)^n*(n+1)!*coeff(ct(n), x, k), k=0..n)), n=0..8); # Peter Luschny, Aug 12 2022
-
Mathematica
t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_,k_] := t[n,k] = (n-k)*t[n-1,k-1] + (k+1)*t[n-1, k]; Flatten[Table[t[n,k], {n,0,11}, {k,0,n}]][[1 ;; 60]] (* Jean-François Alcover, Apr 29 2011, after Maple program *) << Combinatorica` Flatten[Table[Eulerian[n, k], {n, 0, 20}, {k, 0, n}]] (* To generate the table of the numbers T(n,k) *) RecurrenceTable[{T[n + 1, k + 1] == (n - k) T[n, k] + (k + 2) T[n, k + 1], T[0, k] == KroneckerDelta[k]}, T, {n, 0, 12}, {k, 0, 12}] (* Emanuele Munarini, Jan 03 2018 *) Table[If[n==0,1, Sum[(-1)^j*Binomial[n+1, j]*(k+1-j)^n, {j,0,k+1}]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 25 2019 *)
-
PARI
T(n,k) = if(n==0, 1, sum(j=0,k+1, (-1)^(k-j+1)*binomial(n+1,k-j+1)*j^n)); \\ G. C. Greubel, Feb 28 2020
-
Sage
@CachedFunction def eulerian1(n, k): if k==0: return 1 if k==n: return 0 return eulerian1(n-1, k)*(k+1)+eulerian1(n-1, k-1)*(n-k) for n in (0..9): [eulerian1(n, k) for k in(0..n)] # Peter Luschny, Nov 11 2012
-
Sage
[1] + [[sum((-1)^(k-j+1)*binomial(n+1,k-j+1)*j^n for j in (0..k+1)) for k in (0..n)] for n in (1..12)] # G. C. Greubel, Feb 25 2019
Formula
E.g.f.: (y - 1)/(y - exp(x*(y - 1))). - Geoffrey Critzer, May 04 2017
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(n+1, j)*(k+1-j)^n. - G. C. Greubel, Feb 25 2019
T(n, k) = (-1)^n*(n+1)!*[x^k][t^n](1 + log((x*exp(-t) - exp(-t*x))/(x-1))/(t*x)). - Peter Luschny, Aug 12 2022
Comments